Suppr超能文献

凝胶基质型多孔介质中的固定化颗粒。细胞分布不均一。

Immobilized particles in gel matrix-type porous media. Nonhomogeneous cell distribution.

作者信息

Mota Manuel, Teixeira José A, Yelshin Alexander

机构信息

Centro de Eng. Biológica - IBQF, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.

出版信息

Biotechnol Prog. 2002 Jul-Aug;18(4):807-14. doi: 10.1021/bp020046r.

Abstract

The conventional random pore model assumes a homogeneous cell distribution in the gel matrix used to immobilize cells. However, the validity of this model is restricted to values of the exponent alpha, between 1.8 and 2.25, of a model power function relating the diffusivity coefficient in the matrix with the overall cell volume fraction in the system. Based on the analysis of published data for diffusion in gels with immobilized cells and on the homogeneous approach for the random pore model developed in a previous work, a new, nonhomogeneous approach is proposed for alpha values outside the range 1.8-2.25. To explain these data, two main types of nonhomogeneous cell distribution were considered: (1) nonhomogeneous cell distribution in the gel for alpha > 2.25 (type 1) and (2) nonhomogeneity related with anisotropy of cell space orientation when alpha < 1.8 (type 2). In the case of nonhomogeneity of type 1, the cell volume fraction in the layers occupied by cells must be considered in place of the concept previously used for homogeneous distribution, viz., the average cell volume fraction. This model underlines that accumulation of cells in a thin layer close to the surface improves their nutrient intake. For nonhomogeneity of type 2, the tortuosity of such a system is smaller than should be expected if spherical cells were considered, thereby changing the effective diffusion. The model proposed in this work proved to fit into several real cases reported in the literature.

摘要

传统的随机孔模型假定在用于固定细胞的凝胶基质中细胞分布均匀。然而,该模型的有效性仅限于模型幂函数中指数α的值在1.8至2.25之间,该幂函数将基质中的扩散系数与系统中的总细胞体积分数相关联。基于对已发表的固定化细胞凝胶中扩散数据的分析以及先前工作中开发的随机孔模型的均匀方法,针对α值在1.8 - 2.25范围之外的情况,提出了一种新的非均匀方法。为了解释这些数据,考虑了两种主要类型的非均匀细胞分布:(1)α> 2.25时凝胶中细胞的非均匀分布(类型1)和(2)α< 1.8时与细胞空间取向各向异性相关的非均匀性(类型2)。在类型1的非均匀性情况下,必须考虑细胞占据层中的细胞体积分数,以取代先前用于均匀分布的概念,即平均细胞体积分数。该模型强调细胞在靠近表面的薄层中的积累改善了它们的营养物质摄取。对于类型2的非均匀性,这样一个系统的曲折度小于如果考虑球形细胞时预期的曲折度,从而改变了有效扩散。本文提出的模型被证明适用于文献中报道的几个实际案例。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验