Lo Fu-Sun, Erzurumlu Reha S
Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans 70112, USA.
J Neurophysiol. 2002 Aug;88(2):794-801. doi: 10.1152/jn.2002.88.2.794.
Development and maintenance of whisker-specific patterns along the rodent trigeminal pathway depends on an intact sensory periphery during the sensitive/critical period in development. Barrelette cells of the brain stem trigeminal nuclei are the first set of neurons to develop whisker-specific patterns. Those in the principal sensory nucleus (PrV) relay these patterns to the ventrobasal thalamus, and consequently, to the somatosensory cortex. Thus PrV barrelette cells are among the first group of central neurons susceptible to the effects of peripheral damage. Previously we showed that membrane properties of barrelette cells are distinct as early as postnatal day 1 (PND 1) and remain unchanged following peripheral denervation in newborn rat pups (Lo and Erzurumlu 2001). In the present study, we investigated the changes in synaptic transmission. In barrelette cells of normal PND 1 rats, weak stimulation of the trigeminal tract (TrV) that was subthreshold for inducing Na(+) spikes evoked an excitatory postsynaptic potential-inhibitory postsynaptic potential (EPSP-IPSP) sequence that was similar to the responses seen in older rats (Lo et al. 1999). Infraorbital nerve transection at birth did not alter excitatory and inhibitory synaptic connections of the barrelette cells. These observations suggested that local neuronal circuits are already established in PrV at birth and remain intact after deafferentation. Strong stimulation of the TrV induced a sustained depolarization (plateau potential) in denervated but not in normal barrelette neurons. The plateau potential was distinct from the EPSP-IPSP sequence by 1) a sustained (>80 ms) depolarization above -40 mV; 2) a slow decline slope (<0.1 mV/ms); 3) partially or totally inactivated Na(+) spikes on the plateau; and 4) a termination by a steep decay (>1 mV/ms) to a hyperpolarizing membrane level. The plateau potential was mediated by L-type Ca(2+) channels and triggered by a N-methyl-D-aspartate (NMDA) receptor-mediated EPSP. gamma-aminobutyric acid-A (GABA(A)) receptor-mediated IPSP dynamically regulated the latency and duration of the plateau potential. These results indicate that after neonatal peripheral damage, central trigeminal inputs cause a large and long-lasting Ca(2+) influx through L-type Ca(2+) channels in barrelette neurons. Increased Ca(2+) entry may play a key role in injury-induced structural remodeling, and/or transsynaptic cell death.
啮齿动物三叉神经通路中触须特异性模式的发育和维持取决于发育敏感期/关键期内完整的感觉外周。脑干三叉神经核的桶柱细胞是最早形成触须特异性模式的神经元。主感觉核(PrV)中的桶柱细胞将这些模式传递至腹后内侧丘脑,进而传递至体感皮层。因此,PrV桶柱细胞是最早易受外周损伤影响的中枢神经元之一。之前我们发现,早在出生后第1天(PND 1),桶柱细胞的膜特性就有所不同,并且新生大鼠幼崽外周去神经支配后这些特性保持不变(Lo和Erzurumlu,2001年)。在本研究中,我们调查了突触传递的变化。在正常PND 1大鼠的桶柱细胞中,对三叉神经束(TrV)进行低于诱发Na(+) 动作电位阈值的微弱刺激,会诱发兴奋性突触后电位-抑制性突触后电位(EPSP-IPSP)序列,这与在成年大鼠中观察到的反应相似(Lo等人,1999年)。出生时切断眶下神经并不会改变桶柱细胞的兴奋性和抑制性突触连接。这些观察结果表明,PrV中的局部神经元回路在出生时就已建立,去传入神经后仍保持完整。对TrV进行强刺激会在去神经支配的桶柱神经元而非正常桶柱神经元中诱导持续去极化(平台电位)。平台电位与EPSP-IPSP序列的不同之处在于:1)在 -40 mV以上持续(>80 ms)去极化;2)缓慢下降斜率(<0.1 mV/ms);3)平台上部分或完全失活的Na(+) 动作电位;4)通过急剧衰减(>1 mV/ms)终止于超极化膜电位水平。平台电位由L型Ca(2+) 通道介导,并由N-甲基-D-天冬氨酸(NMDA)受体介导的EPSP触发。γ-氨基丁酸-A(GABA(A))受体介导的IPSP动态调节平台电位的潜伏期和持续时间。这些结果表明,新生期外周损伤后,中枢三叉神经输入会导致大量且持久的Ca(2+) 通过桶柱神经元中的L型Ca(2+) 通道内流。Ca(2+) 内流增加可能在损伤诱导的结构重塑和/或跨突触细胞死亡中起关键作用。