Mock Thomas, Kroon Bernd M A
Alfred-Wegener-Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany.
Phytochemistry. 2002 Sep;61(1):53-60. doi: 10.1016/s0031-9422(02)00215-7.
Low photosynthetic active radiation is a strong determinant in the development and growth of sea ice algae. The algae appear to have universal mechanisms to overcome light limitation. One important process, which is induced under light limitation, is the desaturation of chloroplast membrane lipids. In order to discover whether this process is universally valid in sea ice diatoms, we investigated three species coexisting in chemostats illuminated with 15 and 2 micromol photons m(-2) s(-1) at -1 degrees C. Growth under 2 micromol photons m(-2) s(-1) caused a 50% increase in monogalactosyldiacylglycerols (MGDG) thylakoid membrane related 20:5 n-3 fatty acids. This fatty acid supports the fluidity of the thylakoid membrane and therefore the velocity of electron flow, which is indicated by increasing rate constants for the electron transport between Q(A) (first stable electron acceptor) and bound Q(B) (second stable electron acceptor) (11.16 +/- 1.34 to 23.24 +/- 1.35 relative units). Two micromol photons m(-2) s(-1) furthermore resulted in higher amounts of non-lipid bilayer forming MGDG in relation to other bilayer forming lipids, especially digalactosydiacylglycerol (DGDG). The ratio of MGDG:DGDG increased from 3.4 +/- 0.3 to 5.7 +/- 0.3. The existence of bilayer thylakoid membranes with high proportions of non. bilayer forming lipids is only possible when sufficient thylakoid pigment-protein complexes are present. If more thylakoid pigment-protein complexes are present in membranes, as found under extreme light limitation, less bilayer forming lipids such as DGDG are required to stabilize the bilayer structure. Differences in protein contents between both light intensities were not found. Consequently pigment contents which nearly doubled under 2 micromol photons m(-2) s(-1) must be responsible in balancing the potential stability loss resulting from an increase in MGDG:DGDG ratio.
低光合有效辐射是海冰藻类发育和生长的一个重要决定因素。藻类似乎具有克服光限制的通用机制。在光限制条件下诱导的一个重要过程是叶绿体膜脂的去饱和作用。为了探究这一过程在海冰硅藻中是否普遍适用,我们研究了三种共存于恒化器中的硅藻,在 -1℃ 下分别用 15 和 2 微摩尔光子·米⁻²·秒⁻¹ 进行光照培养。在 2 微摩尔光子·米⁻²·秒⁻¹ 光照条件下生长,导致与类囊体膜相关的单半乳糖基二酰甘油(MGDG)中 20:5 n - 3 脂肪酸含量增加了 50%。这种脂肪酸维持了类囊体膜的流动性,进而维持了电子传递速度,这通过 Q(A)(第一个稳定电子受体)和结合态 Q(B)(第二个稳定电子受体)之间电子传递速率常数的增加得以体现(从 11.16 ± 1.34 相对单位增加到 23.24 ± 1.35 相对单位)。此外,2 微摩尔光子·米⁻²·秒⁻¹ 光照还导致相对于其他形成双层结构的脂质,尤其是二半乳糖基二酰甘油(DGDG),形成非双层结构的 MGDG 含量更高。MGDG 与 DGDG 的比例从 3.4 ± 0.3 增加到 5.7 ± 0.3。只有当存在足够数量的类囊体色素 - 蛋白质复合物时,才可能存在高比例非双层形成脂质的类囊体双层膜。如果在膜中存在更多的类囊体色素 - 蛋白质复合物,如在极端光限制条件下所发现的,那么就需要更少的形成双层结构的脂质(如 DGDG)来稳定双层结构。未发现两种光照强度下蛋白质含量存在差异。因此,在 2 微摩尔光子·米⁻²·秒⁻¹ 光照条件下几乎翻倍的色素含量,必定负责平衡因 MGDG 与 DGDG 比例增加而导致的潜在稳定性损失。