Werritty Alan
Department of Geography, University of Dundee, UK.
Sci Total Environ. 2002 Jul 22;294(1-3):29-40. doi: 10.1016/s0048-9697(02)00050-5.
The recent increased variability of Scotland's hydroclimate poses major problems for water resource managers charged with making informed investment decisions given the likely impact of future climate change. Two strategies are developed in this paper to assist managers faced with this environmental uncertainty. The first involves trend analysis of precipitation and runoff since the 1960s and 1970s viewed against longer-term variability reported from instrumental records. The second strategy is based upon current climate change scenarios coupled with GCMs, and downscaling of precipitation and temperature to provide inputs to rainfall-runoff models. The long-term records of precipitation (back to the 1860s) and runoff (back to the 1930s) reveal the late 1980s and early 1990s as the wettest period on record for the west but not for the east. Over the period 1961-1996 the precipitation gradient has intensified across Scotland: wetter west; relatively dry east. Changes in runoff over the period 1970-1996 are also reported with increases in annual flows at 33 out of 38 stations (significantly at 12 stations) and decreases in low flows at 21 out of 38 stations (significantly at one station). The bulk of these flow increases occurred in the south and west especially in the autumn and spring. In terms of high flows over the period 1970-1996, four out of 44 stations reported a change in magnitude and 15 reported an increase in the frequency of POT events. In terms of future climate change, Hulme and Jenkins (1998) predict annual precipitation increases of 6-16% (Scotland) and 6-14% (Scottish Borders) from the 2020s to the 2080s based on the Hadley Centre model (HadCM2) medium-high scenario. Seasonal changes are concentrated in the autumn (SON) and winter (DJF) with increases as high as 24 and 29% for the autumn by the 2080s. (Arnell NW, et al. Institute of Hydrology Report No. 107, Wallingford, 1996), using an earlier transient Hadley experiment (IS92a), predict a 5-15% increase in annual runoff across Scotland by the 2050s, locally rising to 25%. Simulation flow duration curves for the 2050s generate Q95 values up by 5% or less (Rivers Don, Almond and Nith) and Q5 up by 10-24% (Rivers Don, Almond, Nith and Lyne Water). In terms of water resource planning, these predicted changes should be regarded as first order approximations, as they take no account of natural climatic variability, and could generate different absolute values if other scenarios were used. The predictions are, however, broadly consistent with trends in precipitation and runoff for Scotland since the 1970s. Major issues of concern to water resource managers are identified and commented upon in the light of these predictions.
鉴于未来气候变化可能产生的影响,苏格兰水文气候近期变化加剧,给负责做出明智投资决策的水资源管理者带来了重大问题。本文提出了两种策略,以帮助管理者应对这种环境不确定性。第一种策略涉及对自20世纪60年代和70年代以来的降水和径流进行趋势分析,并与仪器记录所报告的长期变化情况进行对比。第二种策略基于当前的气候变化情景以及全球气候模型(GCMs),并对降水和温度进行降尺度处理,以为降雨径流模型提供输入数据。长期的降水记录(可追溯到19世纪60年代)和径流记录(可追溯到20世纪30年代)显示,20世纪80年代末和90年代初是有记录以来西部最湿润的时期,但东部并非如此。在1961 - 1996年期间,苏格兰全境的降水梯度加大:西部更湿润;东部相对干燥。文中还报告了1970 - 1996年期间径流的变化情况,38个站点中有33个站点的年径流量增加(其中12个站点增幅显著),38个站点中有21个站点的低流量减少(其中1个站点降幅显著)。这些流量增加大多发生在南部和西部,尤其是在秋季和春季。就1970 - 1996年期间的高流量而言,44个站点中有4个站点的流量大小发生了变化,15个站点报告超过某一流量阈值(POT)事件的频率增加。关于未来气候变化,休姆和詹金斯(1998)基于哈德利中心模型(HadCM2)中高情景预测,从20世纪20年代到80年代,苏格兰年降水量将增加6 - 16%,苏格兰边境地区将增加6 - 14%。季节性变化集中在秋季(9 - 11月)和冬季(12 - 2月),到20世纪80年代秋季增幅高达24%和29%。(阿内尔·N·W等人,水文研究所报告第107号,沃灵福德,1996),使用早期的瞬态哈德利实验(IS92a)预测,到20世纪50年代,苏格兰年径流量将增加5 - 15%,局部地区将升至25%。20世纪50年代模拟的流量历时曲线显示,超过95%保证率流量(Q95)值上升5%或更低(唐河(Rivers Don)、阿尔蒙德河(Almond)和尼思河(Nith)),超过5%保证率流量(Q5)上升10 - 24%(唐河、阿尔蒙德河、尼思河和莱恩河(Lyne Water))。在水资源规划方面,这些预测应被视为一阶近似值,因为它们未考虑自然气候变异性,如果使用其他情景,可能会产生不同的绝对值。然而,这些预测与自20世纪70年代以来苏格兰的降水和径流趋势大致一致。根据这些预测,确定并评论了水资源管理者关注的主要问题。