Suppr超能文献

铁摄取蛋白A(FepA)中的表面环运动

Surface loop motion in FepA.

作者信息

Scott Daniel C, Newton Salete M C, Klebba Phillip E

机构信息

Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA.

出版信息

J Bacteriol. 2002 Sep;184(17):4906-11. doi: 10.1128/JB.184.17.4906-4911.2002.

Abstract

Using a lysine-specific cleavable cross-linking reagent ethylene glycolbis(sulfosuccimidylsuccinate) (Sulfo-EGS), we studied conformational motion in the surface loops of Escherichia coli FepA during its transport of the siderophore ferric enterobactin. Site-directed mutagenesis determined that Sulfo-EGS reacted with two lysines, K332 and K483, and at least two other unidentified Lys residues in the surface loops of the outer membrane protein. The reagent cross-linked K483 in FepA L7 to either K332 in L5, forming a product that we designated band 1, or to the major outer membrane proteins OmpF, OmpC, and OmpA, forming band 2. Ferric enterobactin binding to FepA did not prevent modification of K483 by Sulfo-EGS but blocked its cross-linking to OmpF/C and OmpA and reduced its coupling to K332. These data show that the loops of FepA undergo conformational changes in vivo, with an approximate magnitude of 15 A, from a ligand-free open state to a ligand-bound closed state. The coupling of FepA L7 to OmpF, OmpC, or OmpA was TonB independent and was unaffected by the uncouplers CCCP (carbonyl cyanide m-chlorophenylhydrazone) and DNP (2,4-dinitrophenol) but completely inhibited by cyanide.

摘要

我们使用赖氨酸特异性可切割交联试剂乙二醇双(磺基琥珀酰亚胺琥珀酸酯)(Sulfo-EGS),研究了大肠杆菌铁摄取受体蛋白(FepA)在转运铁载体肠杆菌素期间其表面环区的构象运动。定点诱变确定Sulfo-EGS与外膜蛋白表面环区的两个赖氨酸K332和K483以及至少两个其他未鉴定的赖氨酸残基发生反应。该试剂将FepA L7中的K483与L5中的K332交联,形成我们命名为条带1的产物,或者与主要外膜蛋白OmpF、OmpC和OmpA交联,形成条带2。肠杆菌素与FepA的结合并不阻止Sulfo-EGS对K483的修饰,但会阻止其与OmpF/C和OmpA的交联,并减少其与K332的偶联。这些数据表明,FepA的环区在体内会发生构象变化,从无配体的开放状态到配体结合的封闭状态,变化幅度约为15埃。FepA L7与OmpF、OmpC或OmpA的偶联不依赖于托敏B,不受解偶联剂羰基氰化物间氯苯腙(CCCP)和2,4-二硝基苯酚(DNP)的影响,但完全被氰化物抑制。

相似文献

1
Surface loop motion in FepA.
J Bacteriol. 2002 Sep;184(17):4906-11. doi: 10.1128/JB.184.17.4906-4911.2002.
2
Concerted loop motion triggers induced fit of FepA to ferric enterobactin.
J Gen Physiol. 2014 Jul;144(1):71-80. doi: 10.1085/jgp.201311159.
3
Permeability properties of a large gated channel within the ferric enterobactin receptor, FepA.
Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10653-7. doi: 10.1073/pnas.90.22.10653.
4
Double mutagenesis of a positive charge cluster in the ligand-binding site of the ferric enterobactin receptor, FepA.
Proc Natl Acad Sci U S A. 1997 Apr 29;94(9):4560-5. doi: 10.1073/pnas.94.9.4560.
5
Effect of loop deletions on the binding and transport of ferric enterobactin by FepA.
Mol Microbiol. 1999 Jun;32(6):1153-65. doi: 10.1046/j.1365-2958.1999.01424.x.
7
Conformational rearrangements in the N-domain of FepA during ferric enterobactin transport.
J Biol Chem. 2020 Apr 10;295(15):4974-4984. doi: 10.1074/jbc.RA119.011850. Epub 2020 Feb 25.
8
Mutations in the Escherichia coli receptor FepA reveal residues involved in ligand binding and transport.
Mol Microbiol. 2001 Aug;41(3):527-36. doi: 10.1046/j.1365-2958.2001.02473.x.
9
Aromatic components of two ferric enterobactin binding sites in Escherichia coli FepA.
Mol Microbiol. 2000 Sep;37(6):1306-17. doi: 10.1046/j.1365-2958.2000.02093.x.
10
Surface topology of the Escherichia coli K-12 ferric enterobactin receptor.
J Bacteriol. 1990 May;172(5):2736-46. doi: 10.1128/jb.172.5.2736-2746.1990.

引用本文的文献

1
Specificity and mechanism of TonB-dependent ferric catecholate uptake by Fiu.
Front Microbiol. 2024 Mar 27;15:1355253. doi: 10.3389/fmicb.2024.1355253. eCollection 2024.
2
Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics.
Chem Rev. 2021 May 12;121(9):5193-5239. doi: 10.1021/acs.chemrev.0c01005. Epub 2021 Mar 16.
4
ROSET Model of TonB Action in Gram-Negative Bacterial Iron Acquisition.
J Bacteriol. 2016 Jan 19;198(7):1013-21. doi: 10.1128/JB.00823-15.
5
Concerted loop motion triggers induced fit of FepA to ferric enterobactin.
J Gen Physiol. 2014 Jul;144(1):71-80. doi: 10.1085/jgp.201311159.
6
Importance of porins for biocide efficacy against Mycobacterium smegmatis.
Appl Environ Microbiol. 2011 May;77(9):3068-73. doi: 10.1128/AEM.02492-10. Epub 2011 Mar 11.
7
Fluoresceination of FepA during colicin B killing: effects of temperature, toxin and TonB.
Mol Microbiol. 2009 Jun;72(5):1171-80. doi: 10.1111/j.1365-2958.2009.06715.x. Epub 2009 Apr 30.
8
Kinetic analysis of ligand interaction with the gonococcal transferrin-iron acquisition system.
Biometals. 2009 Jun;22(3):439-51. doi: 10.1007/s10534-008-9179-y. Epub 2008 Dec 2.
9
TonB induces conformational changes in surface-exposed loops of FhuA, outer membrane receptor of Escherichia coli.
Protein Sci. 2008 Oct;17(10):1679-88. doi: 10.1110/ps.036244.108. Epub 2008 Jul 24.
10
Insight from TonB hybrid proteins into the mechanism of iron transport through the outer membrane.
J Bacteriol. 2008 Jun;190(11):4001-16. doi: 10.1128/JB.00135-08. Epub 2008 Apr 4.

本文引用的文献

1
Structural basis of gating by the outer membrane transporter FecA.
Science. 2002 Mar 1;295(5560):1715-9. doi: 10.1126/science.1067313.
4
Exchangeability of N termini in the ligand-gated porins of Escherichia coli.
J Biol Chem. 2001 Apr 20;276(16):13025-33. doi: 10.1074/jbc.M011282200. Epub 2001 Jan 19.
5
Aromatic components of two ferric enterobactin binding sites in Escherichia coli FepA.
Mol Microbiol. 2000 Sep;37(6):1306-17. doi: 10.1046/j.1365-2958.2000.02093.x.
7
Effect of loop deletions on the binding and transport of ferric enterobactin by FepA.
Mol Microbiol. 1999 Jun;32(6):1153-65. doi: 10.1046/j.1365-2958.1999.01424.x.
8
Protonmotive force, ExbB and ligand-bound FepA drive conformational changes in TonB.
Mol Microbiol. 1999 Mar;31(6):1809-24. doi: 10.1046/j.1365-2958.1999.01317.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验