Alibardi Lorenzo, Thompson Michael B
Dipartimento di Biologia Evoluzionistica Sperimentale, University of Bologna, Italy.
J Anat. 2002 Jul;201(1):71-84. doi: 10.1046/j.1469-7580.2002.00075.x.
Using specific anti-beta keratin and general anti-alpha keratin antibodies, keratins were located in the epidermis of the alligator during the final developmental stages by ultrastructural and immunocytochemical methods. The maturation of the bilayered periderm (= embryonic epidermis) coincides with the disappearance of cell organelles, including the 25-35-nm-thick coarse filaments, and the coalescing of alpha-keratin filaments into a compact mass. The plasmalemma of peridermal cells forms a 15-25-nm-thick electron-dense corneous envelope. These changes start at stage 25, about 3 weeks before hatching, and continue until hatching when the embryonic epidermis is shed. Immature beta-keratogenic cells beneath the embryonic epidermis accumulate immunolabelled beta-filaments which are packed into thin, electron-pale beta-keratogenic cells in the corneous layer. Together, electron-pale and electron-dense materials form a compact 3-4-nm filament pattern of beta-keratin. Melanosomes from epidermal melanocytes, incorporated into beta-cells, give rise to the banded skin pattern of hatchlings. Beta-keratin production is much reduced in the hinge regions, where many alpha-filaments remain packed together with lipid droplets or mucous granules into thinner, more electron-dense, alpha-cells. The keratinaceous material of the alpha-cells is mostly concentrated along the cell membrane, while the lipid/mucous material remains centrally located, as in sebokeratinocytes of the apteric areas of avian skin. Some lipid and mucus is also incorporated into typical beta-cells of the outer scale surface, so that lipids are part of the fully keratinized hard keratin layer of the alligator. Lipids within beta-cells of outer scale surfaces and alpha-cells of the hinge region are probably responsible for limiting water loss and ion movements across the skin. Neither typical mammalian keratohyalin granules nor lepidosaurian keratohyalin-like granules were detected anywhere in alligator epidermis. The combination of anti-beta and anti-alpha keratin antibodies revealed different distributions of beta- and alpha-keratins. In late embryonic stages (25-26 to hatching), beta-keratin occurs only in the upper suprabasal cells, in prekeratinized and keratinized layers, whereas alpha-keratin bundles (tonofilaments) remain only in the lowest layers. The cross-reactivity of the beta-antibody, produced against a chick scale keratin, further shows that avian and crocodilian hard (beta) keratins share common antigenic sites, reflecting a phylogenetic affinity between these taxa.
利用特异性抗β角蛋白抗体和通用抗α角蛋白抗体,通过超微结构和免疫细胞化学方法,在短吻鳄发育的最后阶段定位其表皮中的角蛋白。双层周皮(即胚胎表皮)的成熟与细胞器的消失同时发生,包括25 - 35纳米厚的粗丝,以及α角蛋白丝合并成紧密的团块。周皮细胞的质膜形成15 - 25纳米厚的电子致密角质包膜。这些变化始于第25阶段,即孵化前约3周,并持续到孵化时胚胎表皮脱落。胚胎表皮下方未成熟的β角蛋白生成细胞积累免疫标记的β丝,这些β丝被包装到角质层中薄的、电子淡染的β角蛋白生成细胞中。电子淡染和电子致密物质共同形成了紧密的3 - 4纳米β角蛋白丝模式。来自表皮黑素细胞的黑素体被整合到β细胞中,形成幼鳄的带状皮肤图案。在铰链区域,β角蛋白的产生大大减少,在那里许多α丝仍与脂滴或粘液颗粒一起聚集在更薄、电子密度更高的α细胞中。α细胞的角蛋白物质大多集中在细胞膜周围,而脂质/粘液物质则位于中央,就像鸟类皮肤无羽区的皮脂角质形成细胞一样。一些脂质和粘液也被整合到鳞片外表面的典型β细胞中,因此脂质是短吻鳄完全角化的硬角质层的一部分。鳞片外表面β细胞和铰链区域α细胞中的脂质可能负责限制水分流失和离子通过皮肤的移动。在短吻鳄表皮的任何地方都未检测到典型的哺乳动物透明角质颗粒或鳞龙类透明角质样颗粒。抗β和抗α角蛋白抗体的联合使用揭示了β角蛋白和α角蛋白的不同分布。在胚胎后期阶段(第25 - 26阶段至孵化),β角蛋白仅出现在基底上层细胞、预角质化和角质化层中,而α角蛋白束(张力丝)仅保留在最底层。针对鸡鳞片角蛋白产生的β抗体的交叉反应性进一步表明,鸟类和鳄鱼的硬(β)角蛋白具有共同的抗原位点,反映了这些分类群之间的系统发育亲缘关系。