Suppr超能文献

2-Aminoethoxydiphenyl borate causes dissociation between membrane electrical and mechanical activity in guinea-pig urinary bladder smooth muscle.

作者信息

Imai Toshiyasu, Tanaka Yoshio, Okamoto Takao, Horinouchi Takahiro, Tanaka Hikaru, Koike Katsuo, Shigenobu Koki

机构信息

Department of Pharmacology, Toho University School of Pharmaceutical Sciences, 2-2-1 Miyama, Funabashi-City, Chiba 274-8510, Japan.

出版信息

Naunyn Schmiedebergs Arch Pharmacol. 2002 Sep;366(3):282-5. doi: 10.1007/s00210-002-0596-0. Epub 2002 Jul 6.

Abstract

Physiological functions of urinary bladder profoundly reflect smooth muscle mechanical activity. Urinary bladder smooth muscle itself produces myogenic rhythmic contraction, and this spontaneous mechanical event could be the fundamental determinant of urinary bladder functions. The spontaneous contraction of urinary bladder smooth muscle is thought to be triggered primarily by the action potential generated in this smooth muscle cell. Modulators of ion channels contributing to the configuration of action potential also affect urinary bladder smooth muscle mechanical activity as expected exactly from the effects on the electrical event. In the present study, we show that the frequency of action potential recorded in intact strip of guinea-pig urinary bladder smooth muscle is dramatically increased by 2-aminoethoxydiphenyl borate (2-APB; 30 microM) from 0.2 Hz to 1 Hz (approximately 500% increments). In contrast to an increasing effect expected from the membrane electrical alterations, mechanical activity (both contraction amplitude and frequency) of this smooth muscle is unexpectedly reduced by the same concentration of 2-APB to approximately 35% of the control. The present results firstly show an apparent dissociation of electrical-mechanical coupling in urinary bladder smooth muscle. The alteration of membrane electrical activity might not be the exclusive trigger mechanism responsible for the generation of spontaneous rhythmic contraction of this smooth muscle.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验