Wu Lianming, Tao W Andy, Cooks R G
Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.
Anal Bioanal Chem. 2002 Aug;373(7):618-27. doi: 10.1007/s00216-002-1356-1. Epub 2002 Jul 5.
Chiral recognition of alpha-hydroxy acids has been achieved, and mixtures of enantiomers have been quantified in the gas phase, by using the kinetics of competitive unimolecular dissociation of singly-charged transition metal ion-bound trimeric complexes, M(II)(A)(ref*)(2)-H (M(II)=divalent transition metal ion; A=alpha-hydroxy acid; ref*=chiral reference ligand), to form the dimeric complexes M(II)(A)(ref*)-H and M(II)(ref*)(2)-H. Chiral selectivity, the ratio of these two fragment ion abundances for the complex containing the analyte in one enantiomeric form expressed relative to that for the fragments of the corresponding complex containing the other enantiomer, ranges from 0.65 to 7.32. Chiral differentiation is highly dependent on the choice of chiral reference compound and central metal ion. The different coordination geometry of complexes resulting from the different d-orbital electronic configurations of these transition metal ions plays a role in chiral discrimination. Of all the transition metal ions examined chiral recognition is lowest for Cu(II), because of large distortion of the coordination complexes, and hence weak metal-ligand interactions and small stereochemical effects. It seems that two independent pi-cation interactions occur when N-acetyl-substituted aromatic amino acids used as the reference ligands and this accounts for improved chiral discrimination. If both metal-ligand and ligand-ligand interactions are optimized, large chiral selectivity is achieved. The sensitive nature of the methodology and the linear relationship between the logarithm of the fragment ion abundance ratio and the optical purity, which are intrinsic to the kinetic method, enable mixtures to be analyzed for small enantiomeric excess ( ee) by simply recording the ratios of fragment ion abundances in a tandem mass spectrum.
通过使用单电荷过渡金属离子结合的三聚体配合物M(II)(A)(ref*)(2)-H(M(II)=二价过渡金属离子;A=α-羟基酸;ref*=手性参考配体)的竞争性单分子解离动力学,实现了对α-羟基酸的手性识别,并在气相中对映体混合物进行了定量分析,以形成二聚体配合物M(II)(A)(ref*)-H和M(II)(ref*)(2)-H。手性选择性,即含有一种对映体形式分析物的配合物的这两种碎片离子丰度之比相对于含有另一种对映体的相应配合物碎片的丰度之比,范围为0.65至7.32。手性区分高度依赖于手性参考化合物和中心金属离子的选择。这些过渡金属离子不同的d轨道电子构型导致配合物具有不同的配位几何结构,这在手性识别中起作用。在所有研究的过渡金属离子中,Cu(II)的手性识别最低,这是因为配位配合物的大畸变,因此金属-配体相互作用弱且立体化学效应小。当使用N-乙酰基取代的芳香族氨基酸作为参考配体时,似乎会发生两种独立的π-阳离子相互作用,这解释了手性识别的改善。如果金属-配体和配体-配体相互作用都得到优化,就可以实现大的手性选择性。该方法的灵敏性以及碎片离子丰度比的对数与光学纯度之间的线性关系(这是动力学方法所固有的),使得通过简单记录串联质谱中碎片离子丰度的比率就能够分析对映体过量值(ee)较小的混合物。