Chen Xiang-Jun, Yang Jianke
Department of Mathematics and Statistics, University of Vermont, Burlington, VT 05401, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jun;65(6 Pt 2):066608. doi: 10.1103/PhysRevE.65.066608. Epub 2002 Jun 17.
A direct perturbation theory for solitons of the derivative nonlinear Schrödinger (DNLS) equation is developed based on a closure of eigenfunctions of the linearized DNLS equation around a one-soliton solution. The slow evolution of soliton parameters and the perturbation-induced radiation are obtained. Under the known simple gaugelike transformation, these results are transformed into those for the perturbed modified nonlinear Schrödinger (MNLS) equation describing propagation of femtosecond pulses in optical fibers. A calculation of the perturbation-induced radiation fields for the perturbed DNLS and MNLS equations is also made. Our results for the perturbed MNLS equation can be reduced perfectly to those for the perturbed nonlinear Schrödinger equation in the small nonlinear-dispersion limit.
基于围绕单孤子解的线性化导数非线性薛定谔(DNLS)方程本征函数的封闭,发展了一种针对DNLS方程孤子的直接微扰理论。得到了孤子参数的缓慢演化以及微扰诱导辐射。在已知的简单规范变换下,这些结果被转化为用于描述飞秒脉冲在光纤中传播的微扰修正非线性薛定谔(MNLS)方程的结果。还对微扰DNLS和MNLS方程的微扰诱导辐射场进行了计算。我们关于微扰MNLS方程的结果在小非线性色散极限下可以完美地简化为微扰非线性薛定谔方程的结果。