Regan S P, Delettrez J A, Marshall F J, Soures J M, Smalyuk V A, Yaakobi B, Epstein R, Glebov V Yu, Jaanimagi P A, Meyerhofer D D, Radha P B, Sangster T C, Seka W, Skupsky S, Stoeckl C, Town R P J, Haynes D A, Golovkin I E, Hooper C F, Frenje J A, Li C K, Petrasso R D, Séguin F H
Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299.
Phys Rev Lett. 2002 Aug 19;89(8):085003. doi: 10.1103/PhysRevLett.89.085003. Epub 2002 Aug 2.
The Rayleigh-Taylor instability in its highly nonlinear, turbulent stage causes atomic-scale mixing of the shell material with the fuel in the compressed core of inertial-confinement fusion targets. The density of shell material mixed into the outer core of direct-drive plastic-shell spherical-target implosions on the 60-beam, OMEGA laser system is estimated to be 3.4(+/-1.2) g/cm(3) from time-resolved x-ray spectroscopy, charged-particle spectroscopy, and core x-ray images. The estimated fuel density, 3.6(+/-1) g/cm(3), accounts for only approximately 50% of the neutron-burn-averaged electron density, n(e)=2.2(+/-0.4)x10(24) cm(-3).
瑞利-泰勒不稳定性在其高度非线性的湍流阶段,会导致惯性约束聚变靶压缩核心中壳层材料与燃料发生原子尺度的混合。在60束光的欧米茄激光系统上,通过时间分辨X射线光谱、带电粒子光谱和核心X射线图像,估计直接驱动塑料壳球形靶内爆中混合到外核心的壳层材料密度为3.4(±1.2)克/立方厘米。估计的燃料密度为3.6(±1)克/立方厘米,仅约占中子燃烧平均电子密度n(e)=2.2(±0.4)×10²⁴ 立方厘米⁻³的50%。