Suppr超能文献

球形容器内爆压缩核心中的壳层混合。

Shell mix in the compressed core of spherical implosions.

作者信息

Regan S P, Delettrez J A, Marshall F J, Soures J M, Smalyuk V A, Yaakobi B, Epstein R, Glebov V Yu, Jaanimagi P A, Meyerhofer D D, Radha P B, Sangster T C, Seka W, Skupsky S, Stoeckl C, Town R P J, Haynes D A, Golovkin I E, Hooper C F, Frenje J A, Li C K, Petrasso R D, Séguin F H

机构信息

Laboratory for Laser Energetics, University of Rochester, 250 East River Road, Rochester, New York 14623-1299.

出版信息

Phys Rev Lett. 2002 Aug 19;89(8):085003. doi: 10.1103/PhysRevLett.89.085003. Epub 2002 Aug 2.

Abstract

The Rayleigh-Taylor instability in its highly nonlinear, turbulent stage causes atomic-scale mixing of the shell material with the fuel in the compressed core of inertial-confinement fusion targets. The density of shell material mixed into the outer core of direct-drive plastic-shell spherical-target implosions on the 60-beam, OMEGA laser system is estimated to be 3.4(+/-1.2) g/cm(3) from time-resolved x-ray spectroscopy, charged-particle spectroscopy, and core x-ray images. The estimated fuel density, 3.6(+/-1) g/cm(3), accounts for only approximately 50% of the neutron-burn-averaged electron density, n(e)=2.2(+/-0.4)x10(24) cm(-3).

摘要

瑞利-泰勒不稳定性在其高度非线性的湍流阶段,会导致惯性约束聚变靶压缩核心中壳层材料与燃料发生原子尺度的混合。在60束光的欧米茄激光系统上,通过时间分辨X射线光谱、带电粒子光谱和核心X射线图像,估计直接驱动塑料壳球形靶内爆中混合到外核心的壳层材料密度为3.4(±1.2)克/立方厘米。估计的燃料密度为3.6(±1)克/立方厘米,仅约占中子燃烧平均电子密度n(e)=2.2(±0.4)×10²⁴ 立方厘米⁻³的50%。

相似文献

1
Shell mix in the compressed core of spherical implosions.
Phys Rev Lett. 2002 Aug 19;89(8):085003. doi: 10.1103/PhysRevLett.89.085003. Epub 2002 Aug 2.
2
Dependence of shell mix on feedthrough in direct drive inertial confinement fusion.
Phys Rev Lett. 2004 May 7;92(18):185002. doi: 10.1103/PhysRevLett.92.185002. Epub 2004 May 5.
3
Time-dependent nuclear measurements of mix in inertial confinement fusion.
Phys Rev Lett. 2007 May 25;98(21):215002. doi: 10.1103/PhysRevLett.98.215002. Epub 2007 May 24.
4
Measurements of core and compressed-shell temperature and density conditions in thick-wall target implosions at the OMEGA laser facility.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jun;83(6 Pt 2):066408. doi: 10.1103/PhysRevE.83.066408. Epub 2011 Jun 21.
5
High-adiabat high-foot inertial confinement fusion implosion experiments on the national ignition facility.
Phys Rev Lett. 2014 Feb 7;112(5):055001. doi: 10.1103/PhysRevLett.112.055001. Epub 2014 Feb 5.
6
Mitigating laser imprint in direct-drive inertial confinement fusion implosions with high-Z dopants.
Phys Rev Lett. 2012 May 11;108(19):195003. doi: 10.1103/PhysRevLett.108.195003. Epub 2012 May 8.
7
Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions.
Phys Rev Lett. 2013 Aug 23;111(8):085004. doi: 10.1103/PhysRevLett.111.085004.
8
Time-resolved areal-density measurements with proton spectroscopy in spherical implosions.
Phys Rev Lett. 2003 Apr 4;90(13):135002. doi: 10.1103/PhysRevLett.90.135002. Epub 2003 Apr 2.
9
Hot-spot mix in ignition-scale inertial confinement fusion targets.
Phys Rev Lett. 2013 Jul 26;111(4):045001. doi: 10.1103/PhysRevLett.111.045001. Epub 2013 Jul 22.
10
First observations of nonhydrodynamic mix at the fuel-shell interface in shock-driven inertial confinement implosions.
Phys Rev Lett. 2014 Apr 4;112(13):135001. doi: 10.1103/PhysRevLett.112.135001. Epub 2014 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验