Del Valle Pedro L, Trifillis Anna, Ruegg Charles E, Kane Andrew S
Department of Pathology, School of Medicine, University of Maryland, Baltimore 21201, USA.
In Vitro Cell Dev Biol Anim. 2002 Apr;38(4):218-27. doi: 10.1290/1071-2690(2002)038<0218:COGTBC>2.0.CO;2.
Rabbit kidney proximal convoluted tubule (RPCT) and proximal straight tubule (RPST) cells were independently isolated and cultured. The kinetics of the sodium-dependent glucose transport was characterized by determining the uptake of the glucose analog alpha-methylglucopyranoside. Cell culture and assay conditions used in these experiments were based on previous experiments conducted on the renal cell line derived from the whole kidney of the Yorkshire pig (LLC-PK1). Results indicated the presence of two distinct sodium-dependent glucose transporters in rabbit renal cells: a relatively high-capacity, low-affinity transporter (V(max) = 2.28 +/- 0.099 nmoles/mg protein min, Km = 4.1 +/- 0.27 mM) in RPCT cells and a low-capacity, high-affinity transporter (V(max) = 0.45 +/- 0.076 nmoles/mg protein min, K(m) = 1.7 +/- 0.43 mM) in RPST cells. A relatively high-capacity, low-affinity transporter (V(max) = 1.68 +/- 0.215 nmoles/mg protein min, Km = 4.9 +/- 0.23 mM) was characterized in LLC-PK1 cells. Phlorizin inhibited the uptake of alpha-methylglucopyranoside in proximal convoluted, proximal straight, and LLC-PK1 cells by 90, 50, and 90%, respectively. Sodium-dependent glucose transport in all three cell types was specific for hexoses. These data are consistent with the kinetic heterogeneity of sodium-dependent glucose transport in the S1-S2 and S3 segments of the mammalian renal proximal tubule. The RPCT-RPST cultured cell model is novel, and this is the first report of sodium-dependent glucose transport characterization in primary cultures of proximal straight tubule cells. Our results support the use of cultured monolayers of RPCT and RPST cells as a model system to evaluate segment-specific differences in these renal cell types.
兔肾近端曲管(RPCT)和近端直管(RPST)细胞被分别分离并培养。通过测定葡萄糖类似物α-甲基吡喃葡萄糖苷的摄取来表征钠依赖性葡萄糖转运的动力学。这些实验中使用的细胞培养和测定条件基于先前对源自约克郡猪全肾的肾细胞系(LLC-PK1)进行的实验。结果表明兔肾细胞中存在两种不同的钠依赖性葡萄糖转运体:RPCT细胞中一种相对高容量、低亲和力的转运体(V(max)=2.28±0.099纳摩尔/毫克蛋白·分钟,Km = 4.1±0.27毫摩尔)和RPST细胞中一种低容量、高亲和力的转运体(V(max)=0.45±0.076纳摩尔/毫克蛋白·分钟,K(m)=1.7±0.43毫摩尔)。在LLC-PK1细胞中鉴定出一种相对高容量、低亲和力的转运体(V(max)=1.68±0.215纳摩尔/毫克蛋白·分钟,Km = 4.9±0.23毫摩尔)。根皮素分别抑制近端曲管、近端直管和LLC-PK1细胞中α-甲基吡喃葡萄糖苷的摄取达90%、50%和90%。所有三种细胞类型中的钠依赖性葡萄糖转运对己糖具有特异性。这些数据与哺乳动物肾近端小管S1-S2和S3段中钠依赖性葡萄糖转运的动力学异质性一致。RPCT-RPST培养细胞模型是新颖的,这是首次关于近端直管细胞原代培养中钠依赖性葡萄糖转运特征的报道。我们的结果支持将RPCT和RPST细胞的培养单层用作模型系统来评估这些肾细胞类型中的节段特异性差异。