Bailly Xavier, Jollivet Didier, Vanin Stephano, Deutsch Jean, Zal Franck, Lallier François, Toulmond André
Station Biologique de Roscoff, UPR 9042 CNRS-UPMC-INSU, Laboratoire Ecophysiologie, Roscoff, France.
Mol Biol Evol. 2002 Sep;19(9):1421-33. doi: 10.1093/oxfordjournals.molbev.a004205.
The giant extracellular hexagonal bilayer hemoglobin (HBL-Hb) of the deep-sea hydrothermal vent tube worm Riftia pachyptila is able to transport simultaneously O(2) and H(2)S in the blood from the gills to a specific organ: the trophosome that harbors sulfide-oxidizing endosymbionts. This vascular HBL-Hb is made of 144 globins from which four globin types (A1, A2, B1, and B2) coevolve. The H(2)S is bound at a specific location (not on the heme site) onto two of these globin types. In order to understand how such a function emerged and evolved in vestimentiferans and other related annelids, six partial cDNAs corresponding to the six globins known to compose the multigenic family of R. pachyptila have been identified and sequenced. These partial sequences (ca. 120 amino acids, i.e., 80% of the entire protein) were used to reconstruct molecular phylogenies in order to trace duplication events that have led to the family organization of these globins and to locate the position of the free cysteine residues known to bind H(2)S. From these sequences, only two free cysteine residues have been found to occur, at positions Cys + 1 (i.e., 1 a.a. from the well-conserved distal histidine) and Cys + 11 (i.e., 11 a.a. from the same histidine) in globins B2 and A2, respectively. These two positions are well conserved in annelids, vestimentiferans, and pogonophorans, which live in sulfidic environments. The structural comparison of the hydrophobic environment that surrounds these cysteine residues (the sulfide-binding domain) using hydrophobic cluster analysis plots, together with the cysteine positions in paralogous strains, suggests that the sulfide-binding function might have emerged before the annelid radiation in order to detoxify this toxic compound. Moreover, globin evolutionary rates are highly different between paralogous strains. This suggests that either the two globin subfamilies involved in the sulfide-binding function (A2 and B2) have evolved under strong directional selective constraints (negative selection) and that the two other globins (A1 and B1) have accumulated more substitutions through positive selection or have evolved neutrally after a relaxation of selection pressures. A likely scenario on the evolution of this multigenic family is proposed and discussed from this data set.
深海热液喷口管虫厚巨穴蛤的巨大细胞外六边形双层血红蛋白(HBL - Hb)能够在血液中同时将氧气(O₂)和硫化氢(H₂S)从鳃运输到一个特定器官:容纳硫化物氧化内共生体的营养体。这种血管中的HBL - Hb由144个珠蛋白组成,其中四种珠蛋白类型(A1、A2、B1和B2)共同进化。H₂S在这些珠蛋白类型中的两种上的特定位置(不在血红素位点)结合。为了了解这种功能是如何在多毛纲动物和其他相关环节动物中出现和进化的,已鉴定并测序了六个对应于已知构成厚巨穴蛤多基因家族的六个珠蛋白的部分cDNA。这些部分序列(约120个氨基酸,即整个蛋白质的80%)被用于重建分子系统发育,以追踪导致这些珠蛋白家族组织的重复事件,并定位已知结合H₂S的游离半胱氨酸残基的位置。从这些序列中,仅在珠蛋白B2和A2中分别发现了两个游离半胱氨酸残基,位于Cys + 1位置(即距离保守的远端组氨酸1个氨基酸)和Cys + 11位置(即距离同一组氨酸11个氨基酸)。这两个位置在生活在含硫环境中的环节动物、多毛纲动物和须腕动物中高度保守。使用疏水簇分析图对围绕这些半胱氨酸残基的疏水环境(硫化物结合结构域)进行结构比较,以及旁系同源菌株中的半胱氨酸位置,表明硫化物结合功能可能在环节动物辐射之前就已出现,以便对这种有毒化合物进行解毒。此外,旁系同源菌株之间的珠蛋白进化速率差异很大。这表明要么参与硫化物结合功能的两个珠蛋白亚家族(A2和B2)在强烈的定向选择约束(负选择)下进化,而另外两个珠蛋白(A1和B1)通过正选择积累了更多替换,要么在选择压力放松后中性进化。根据该数据集提出并讨论了这个多基因家族进化的可能情景。