Reutter B W, Gullberg G T, Huesman R H
Center for Functional Imaging, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA.
Phys Med Biol. 2002 Aug 7;47(15):2673-83. doi: 10.1088/0031-9155/47/15/309.
Artefacts can result when reconstructing a dynamic image sequence from inconsistent single photon emission computed tomography (SPECT) projection data acquired by a slowly rotating gantry. The artefacts can lead to biases in kinetic parameters estimated from time-activity curves generated by overlaying volumes of interest on the images. Insufficient sampling and truncation of projections by cone-beam collimators can cause additional artefacts. To overcome these sources of bias in conventional image based dynamic data analysis, we have been investigating the estimation of time-activity curves and kinetic model parameters directly from dynamic SPECT projection data by modelling the spatial and temporal distribution of the radiopharmaceutical throughout the projected field of view. In the present work, we perform Monte Carlo simulations to study the effects of the temporal modelling on the statistical variability of the reconstructed spatiotemporal distributions. The simulations utilize fast methods for fully four-dimensional (4D) direct estimation of spatiotemporal distributions and their statistical uncertainties, using a spatial segmentation and temporal B-splines. The simulation results suggest that there is benefit in modelling higher orders of temporal spline continuity. In addition, the accuracy of the time modelling can be increased substantially without unduly increasing the statistical uncertainty, by using relatively fine initial time sampling to capture rapidly changing activity distributions.
当从由缓慢旋转的机架采集的不一致的单光子发射计算机断层扫描(SPECT)投影数据重建动态图像序列时,可能会产生伪影。这些伪影会导致从通过在图像上叠加感兴趣区域生成的时间-活度曲线估计的动力学参数出现偏差。锥束准直器对投影的采样不足和截断会导致额外的伪影。为了克服传统基于图像的动态数据分析中的这些偏差来源,我们一直在研究通过对整个投影视野内放射性药物的空间和时间分布进行建模,直接从动态SPECT投影数据估计时间-活度曲线和动力学模型参数。在本工作中,我们进行蒙特卡罗模拟,以研究时间建模对重建的时空分布的统计变异性的影响。模拟使用快速方法,通过空间分割和时间B样条对时空分布及其统计不确定性进行全四维(4D)直接估计。模拟结果表明,对更高阶的时间样条连续性进行建模是有益的。此外,通过使用相对精细的初始时间采样来捕捉快速变化的活度分布,可以在不过度增加统计不确定性的情况下,大幅提高时间建模的准确性。