Suppr超能文献

干旱诱导的香脂杨和欧洲桤木叶柄、枝条及根系木质部功能障碍

Drought-Induced Xylem Dysfunction in Petioles, Branches, and Roots of Populus balsamifera L. and Alnus glutinosa (L.) Gaertn.

作者信息

Hacke U., Sauter J. J.

机构信息

Botanisches Institut der Christian-Albrechts-Universitat zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.

出版信息

Plant Physiol. 1996 Jun;111(2):413-417. doi: 10.1104/pp.111.2.413.

Abstract

Variation in vulnerability to xylem cavitation was measured within individual organs of Populus balsamifera L. and Alnus glutinosa (L.) Gaertn. Cavitation was quantified by three different techniques: (a) measuring acoustic emissions, (b) measuring loss of hydraulic conductance while air-dehydrating a branch, and (c) measuring loss of hydraulic conductance as a function of positive air pressure injected into the xylem. All of these techniques gave similar results. In Populus, petioles were more resistant than branches, and branches were more resistant than roots. This corresponded to the pattern of vessel width: maximum vessel diameter in 1- to 2-year-old roots was 140 [mu]m, compared to 65 and 45 [mu]m in rapidly growing 1-year-old shoots and petioles, respectively. Cavitation in Populus petioles started at a threshold water potential of -1.1 MPa. The lowest leaf water potential observed was -0.9 MPa. In Alnus, there was no relationship between vessel diameter and the cavitation response of a plant organ. Although conduits were narrower in petioles than in branches, petioles were more vulnerable to cavitation. Cavitation in petioles was detected when water potential fell below -1.2 MPa. This value equaled midday leaf water potential in late June. As in Populus, roots were the most vulnerable organ. The significance of different cavitation thresholds in individual plant organs is discussed.

摘要

在香脂杨(Populus balsamifera L.)和欧洲桤木(Alnus glutinosa (L.) Gaertn.)的各个器官内测量了木质部空化脆弱性的变化。通过三种不同技术对空化进行了量化:(a)测量声发射,(b)在对枝条进行空气脱水时测量水力导度损失,以及(c)测量作为注入木质部的正气压函数的水力导度损失。所有这些技术都给出了相似的结果。在杨树中,叶柄比枝条更具抗性,枝条比根更具抗性。这与导管宽度模式相对应:1至2年生根中的最大导管直径为140μm,而快速生长的1年生嫩枝和叶柄中的最大导管直径分别为65μm和45μm。杨树叶柄中的空化始于-1.1 MPa的阈值水势。观察到的最低叶片水势为-0.9 MPa。在桤木中,导管直径与植物器官的空化响应之间没有关系。尽管叶柄中的导管比枝条中的窄,但叶柄对空化更敏感。当水势降至-1.2 MPa以下时,在叶柄中检测到空化。该值等于6月下旬的中午叶片水势。与杨树一样,根是最敏感的器官。讨论了单个植物器官中不同空化阈值的意义。

相似文献

2
Trade-offs between xylem hydraulic properties, wood anatomy and yield in Populus.
Tree Physiol. 2014 Jul;34(7):744-56. doi: 10.1093/treephys/tpu048. Epub 2014 Jul 8.
3
Poplar vulnerability to xylem cavitation acclimates to drier soil conditions.
Physiol Plant. 2010 Jul 1;139(3):280-8. doi: 10.1111/j.1399-3054.2010.01367.x. Epub 2010 Feb 19.
8
Xylem cavitation in roots and stems of Douglas-fir and white fir.
Tree Physiol. 1997 Apr;17(4):275-80. doi: 10.1093/treephys/17.4.275.
9
Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees.
Tree Physiol. 2013 Jul;33(7):672-83. doi: 10.1093/treephys/tpt030. Epub 2013 May 8.

引用本文的文献

1
Within-leaf variation in embolism resistance is not a rule for compound-leaved angiosperms.
Am J Bot. 2024 Dec;111(12):e16447. doi: 10.1002/ajb2.16447. Epub 2024 Dec 16.
2
New insights into a sensitive life stage: hydraulics of tree seedlings in their first growing season.
New Phytol. 2025 Jan;245(2):577-590. doi: 10.1111/nph.20243. Epub 2024 Nov 5.
3
Xylem Embolism and Pathogens: Can the Vessel Anatomy of Woody Plants Contribute to Resistance?
Pathogens. 2023 Jun 12;12(6):825. doi: 10.3390/pathogens12060825.
7
Xylem Embolism Resistance Determines Leaf Mortality during Drought in .
Plant Physiol. 2020 Jan;182(1):547-554. doi: 10.1104/pp.19.00585. Epub 2019 Oct 17.
8
The Causes of Leaf Hydraulic Vulnerability and Its Influence on Gas Exchange in .
Plant Physiol. 2018 Dec;178(4):1584-1601. doi: 10.1104/pp.18.00743. Epub 2018 Oct 26.
10
Volatile organic compound emissions from under interacting drought and herbivory stresses.
Environ Exp Bot. 2014 Apr;100:55-63. doi: 10.1016/j.envexpbot.2013.12.011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验