Atman A P F, Dickman Ronald, Moreira J G
Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, C. P. 702 30123-970, Belo Horizonte, MG, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 2):016113. doi: 10.1103/PhysRevE.66.016113. Epub 2002 Jul 22.
The critical behavior at the frozen-active transition in the Domany-Kinzel stochastic cellular automaton is studied via a surface growth process in (1+1) dimensions. At criticality, this process presents a kinetic roughening transition; we measure the critical exponents in simulations. Two update schemes are considered: in the symmetric scheme, the growth surfaces belong to the directed percolation (DP) universality class, except at one terminal point. At this point, the phase transition is discontinuous and the surfaces belong to the compact directed percolation universality class. The relabeling of space-time points in the nonsymmetric scheme alters significantly the surface growth, changing the values of the critical exponents. The critical behavior of rough surfaces at the nonchaotic-chaotic transition is also studied using the damage spreading technique; the exponents confirm DP values for the symmetric scheme.
通过(1 + 1)维的表面生长过程研究了多马尼 - 金泽随机细胞自动机中冻结 - 活跃转变的临界行为。在临界时,该过程呈现出动力学粗糙化转变;我们在模拟中测量临界指数。考虑了两种更新方案:在对称方案中,生长表面属于有向渗流(DP)普适类,但在一个端点处除外。在这一点上,相变是不连续的,表面属于紧致有向渗流普适类。非对称方案中时空点的重新标记显著改变了表面生长,改变了临界指数的值。还使用损伤传播技术研究了非混沌 - 混沌转变处粗糙表面的临界行为;指数证实了对称方案的DP值。