Sánchez Lidya, Horner David, Moore Dorothy, Henze Katrin, Embley T, Müller Miklós
The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
Gene. 2002 Jul 24;295(1):51-9. doi: 10.1016/s0378-1119(02)00804-1.
Sequences of putative fructose-1,6-bisphospate aldolases (FBA) in five amitochondriate unicellular eukaryotes, the diplomonads Giardia intestinalis (published earlier) and Spironucleus barkhanus, the pelobiont Mastigamoeba balamuthi,the entamoebid Entamoeba histolytica, and the parabasalid Trichomonas vaginalis all belong to Class II of FBAs and are highly similar to each other (>48% amino acid identity). The five protist sequences, however, do not form a monophyletic group. Diplomonad FBAs share a most recent common ancestor, while FBAs of the three other protist species are part of a lineage that also includes sequences from a few eubacteria (Clostridium difficile, Treponema pallidum, Chlorobium tepidum). Both clades are part of the Type B of Class II aldolases, a complex that contains at least three additional lineages (subgroups) of enzymes. Type B enzymes are distant from Type A Class II aldolases, which consists of a number of bacterial and fungal enzymes and also contains the cytosolic FBA of Euglena gracilis. Class II aldolases are not homologous to Class I enzymes, to which animal and plant enzymes belong. The results indicate that amitochondriate protists acquired their FBAs from separate and different sources, involving lateral gene transfer from eubacteria, than did all other eukaryotes studied so far and underscore the complex composition of the glycolytic machinery in unicellular eukaryotes.
五种无线粒体单细胞真核生物中假定的果糖-1,6-二磷酸醛缩酶(FBA)序列,即双滴虫类的肠贾第虫(先前已发表)和巴氏螺旋体、叶状生物巴氏鞭毛虫、内阿米巴类的溶组织内阿米巴以及副基体类的阴道毛滴虫,均属于FBA的II类,并且彼此高度相似(氨基酸同一性>48%)。然而,这五个原生生物序列并未形成一个单系群。双滴虫类的FBA有一个最近的共同祖先,而其他三种原生生物的FBA则是一个谱系的一部分,该谱系还包括一些真细菌(艰难梭菌、梅毒螺旋体、嗜热绿菌)的序列。这两个进化枝都是II类醛缩酶B型的一部分,该复合体还包含至少另外三个酶的谱系(亚群)。B型酶与A类II型醛缩酶距离较远,A类II型醛缩酶由许多细菌和真菌酶组成,还包含纤细裸藻的胞质FBA。II类醛缩酶与动物和植物酶所属的I类酶不同源。结果表明,与迄今为止研究的所有其他真核生物相比,无线粒体原生生物从不同的来源获得了它们的FBA,涉及从真细菌的横向基因转移,这突出了单细胞真核生物糖酵解机制的复杂组成。