Suppr超能文献

Differential blockade of neuronal voltage-gated Na(+) and K(+) channels by antidepressant drugs.

作者信息

Nicholson Graham M, Blanche Tim, Mansfield Kylie, Tran Yvonne

机构信息

Department of Health Sciences, University of Technology, PO Box 123, Sydney, Broadway NSW 2007, Australia.

出版信息

Eur J Pharmacol. 2002 Sep 27;452(1):35-48. doi: 10.1016/s0014-2999(02)02239-2.

Abstract

The effects of a range of antidepressants were investigated on neuronal voltage-gated Na(+) and K(+) channels. With the exception of phenelzine, all antidepressants inhibited batrachotoxin-stimulated 22Na(+) uptake, most likely via negative allosteric inhibition of batrachotoxin binding to neurotoxin receptor site-2 on the Na(+) channel. Imipramine also produced a differential action on macroscopic Na(+) and K(+) channel currents in acutely dissociated rat dorsal root ganglion neurons. Imipramine produced a use-dependent block of Na(+) channels. In addition, there was a hyperpolarizing shift in the voltage-dependence of steady-state Na(+) channel inactivation and slowed repriming kinetics consistent with imipramine having a higher affinity for the inactivated state of the Na(+) channel. At higher concentrations, imipramine also blocked delayed-rectifier and transient outward K(+) currents in the absence of alterations to the voltage-dependence of activation or the kinetics of inactivation. These actions on voltage-gated ion channels may underlie the therapeutic and toxic effects of these drugs.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验