Suppr超能文献

一种利用X射线纤维衍射和建模来优化卷曲螺旋蛋白结构的方法。

A procedure for refining a coiled coil protein structure using x-ray fiber diffraction and modeling.

作者信息

Briki Fatma, Doucet Jean, Etchebest Catherine

机构信息

LURE, Bât 209D, Centre Universitaire Paris-Sud, F-91898 Orsay Cedex, France.

出版信息

Biophys J. 2002 Oct;83(4):1774-83. doi: 10.1016/S0006-3495(02)73943-X.

Abstract

We describe a combined use of experimental and simulation techniques to configure side chains in a coiled coil structure. As already demonstrated in a previous work, x-ray diffraction patterns from hard alpha-keratin fibers in the 5.15 A meridian zone reflect the global configuration of the chi(1) dihedral angle of the coiled coil side chains. Molecular simulations, such as energy minimization and molecular dynamics, and rotameric representation in the PDB, are used here on a heterodimeric coiled coil to investigate the dihedral angle distribution along the sequence. Different procedures have been used to build the structure, the quality assessment was based on the agreement between the simulated diffraction patterns and the experimental ones in the fingerprint region of coiled coils (5.15 A). The best one for building a realistic coiled coil structure consists of placing the side chains using molecular dynamics (MD) simulations, followed by side chain positioning using SMD or SCWRL procedures. The side chains and the backbone are equilibrated during the MD until they reach an equilibrium state for the t/g(+) ratio. Positioning the side chains on the resulting backbone, using the above procedures, gives rise to a well-defined 5.15 A meridian reflection.

摘要

我们描述了一种结合实验和模拟技术来配置卷曲螺旋结构中侧链的方法。正如之前一项工作中所展示的,来自硬α-角蛋白纤维在5.15 Å子午线区域的X射线衍射图谱反映了卷曲螺旋侧链的χ(1)二面角的整体构型。这里在一个异源二聚体卷曲螺旋上使用了分子模拟,如能量最小化和分子动力学,以及PDB中的旋转异构体表示,来研究沿序列的二面角分布。构建结构使用了不同的程序,质量评估基于模拟衍射图谱与卷曲螺旋指纹区域(5.15 Å)的实验图谱之间的一致性。构建逼真的卷曲螺旋结构的最佳方法包括使用分子动力学(MD)模拟放置侧链,然后使用SMD或SCWRL程序进行侧链定位。在MD过程中,侧链和主链会达到平衡,直到它们达到t/g(+)比率的平衡状态。使用上述程序将侧链定位在所得主链上,会产生明确的5.15 Å子午线反射。

相似文献

1
A procedure for refining a coiled coil protein structure using x-ray fiber diffraction and modeling.
Biophys J. 2002 Oct;83(4):1774-83. doi: 10.1016/S0006-3495(02)73943-X.
3
Unraveling double stranded alpha-helical coiled coils: an x-ray diffraction study on hard alpha-keratin fibers.
Biopolymers. 2001 Apr 15;58(5):526-33. doi: 10.1002/1097-0282(20010415)58:5<526::AID-BIP1028>3.0.CO;2-L.
5
Computer modelling of the alpha-helical coiled coil: packing of side-chains in the inner core.
J Mol Biol. 1995 Jun 23;249(5):967-87. doi: 10.1006/jmbi.1995.0352.
6
Structural and biochemical characterizations of an intramolecular tandem coiled coil protein.
Biochem Biophys Res Commun. 2014 Dec 12;455(3-4):339-46. doi: 10.1016/j.bbrc.2014.11.013. Epub 2014 Nov 15.
9
Fifty years of fibrous protein research: a personal retrospective.
J Struct Biol. 2014 Jun;186(3):320-34. doi: 10.1016/j.jsb.2013.10.010. Epub 2013 Oct 19.

本文引用的文献

1
Unraveling double stranded alpha-helical coiled coils: an x-ray diffraction study on hard alpha-keratin fibers.
Biopolymers. 2001 Apr 15;58(5):526-33. doi: 10.1002/1097-0282(20010415)58:5<526::AID-BIP1028>3.0.CO;2-L.
3
Modeling alpha-helical coiled coils: analytic relations between parameters.
J Struct Biol. 1999 Aug;127(1):16-21. doi: 10.1006/jsbi.1999.4125.
5
Bayesian statistical analysis of protein side-chain rotamer preferences.
Protein Sci. 1997 Aug;6(8):1661-81. doi: 10.1002/pro.5560060807.
8
A transmembrane helix dimer: structure and implications.
Science. 1997 Apr 4;276(5309):131-3. doi: 10.1126/science.276.5309.131.
10
Pitch diversity in alpha-helical coiled coils.
Proteins. 1993 Mar;15(3):223-34. doi: 10.1002/prot.340150302.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验