Kutzki Olaf, Park Hyung Soon, Ernst Justin T, Orner Brendan P, Yin Hang, Hamilton Andrew D
Department of Chemistry, Yale University, P.O. Box 208107, New Haven, CT 06520-8107, USA.
J Am Chem Soc. 2002 Oct 9;124(40):11838-9. doi: 10.1021/ja026861k.
The rational design of low-molecular weight ligands that disrupt protein-protein interactions is still a challenging goal in medicinal chemistry. Our approach to this problem involves the design of molecular scaffolds that mimic the surface functionality projected along one face of an alpha-helix. Using a terphenyl scaffold, which in a staggered conformation closely reproduces the projection of functionality on the surface of an alpha-helix, we designed mimics of the pro-apoptotic alpha-helical Bak-peptide as inhibitors of the Bak/Bcl-xL interaction. This led to the development of a potent Bcl-xL antagonist (KD = 114 nM), whose binding affinity for Bcl-xL was assessed by a fluorescence polarization assay. To determine the binding site of the developed inhibitor we used docking studies and an HSQC-NMR experiment with 15N-labeled Bcl-xL protein. These studies suggest that the inhibitor is binding in the same hydrophobic cleft as the Bak- and Bad-peptides.
设计能够破坏蛋白质-蛋白质相互作用的低分子量配体在药物化学领域仍是一个具有挑战性的目标。我们解决这个问题的方法包括设计分子支架,该支架模仿沿α-螺旋一个面投影的表面功能。使用三联苯支架,其交错构象能紧密再现α-螺旋表面功能的投影,我们设计了促凋亡α-螺旋Bak肽的模拟物作为Bak/Bcl-xL相互作用的抑制剂。这导致了一种强效Bcl-xL拮抗剂(KD = 114 nM)的开发,其对Bcl-xL的结合亲和力通过荧光偏振测定法进行评估。为了确定所开发抑制剂的结合位点,我们使用了对接研究以及对15N标记的Bcl-xL蛋白进行的HSQC-NMR实验。这些研究表明,该抑制剂与Bak肽和Bad肽结合在相同的疏水裂缝中。