Suppr超能文献

通过非线性肺力学分析确定最佳高频振荡通气设置

Optimal high-frequency oscillatory ventilation settings by nonlinear lung mechanics analysis.

作者信息

Habib Robert H, Pyon Kee H, Courtney Sherry E

机构信息

Cardiopulmonary Research, Mercy Children's Hospital at St. Vincent Mercy Medical Center, Toledo, OH 43608, USA.

出版信息

Am J Respir Crit Care Med. 2002 Oct 1;166(7):950-3. doi: 10.1164/rccm.200205-398OC.

Abstract

Use of nontidal high-frequency oscillatory ventilation (HFOV) while the lungs are expanded by an imposed airway pressure (P(aw)) in neonates is increasingly based on evidence of decreased risk of lung injury. However, an objective method to optimize P(aw) is lacking. We measured lung volume changes (deltaV(L)[t]) via respiratory inductance plethysmography over a range of P(aw) settings in five piglets before and after lung lavage. These multiple deltaV(L)(t) were then simultaneously fit by an exponential rise to maximum model, deltaV(L)(t, P(aw)) = deltaV(L,max). (1 - e(-(t/tau))), where deltaV(L,max) was a sigmoidal function of P(aw) and tau varied with lung volume. Postlavage, the effective compliance (C(EFF) = deltaV(L,max)/P(aw)) was generally decreased, whereas tau increased, indicating a slower paced volume recruitment. Model-derived C(EFF)-deltaV(L,max) relationships were altered substantially after lavage and were sigmoidal with a bell-shaped derivative function. The maximum of its derivative corresponded to a favorable (or optimal) deltaV(L)/P(aw) where the maximal increase in compliance is achieved. In conclusion, C(EFF)-deltaV(L,max) data available from respiratory inductance plethysmography provided important insight to changes in lung mechanics. These also provided a basis of an objective method (1) to optimize P(aw) during HFOV and (2) to assess the efficacy of treatments and progression/regression of underlying disease in neonates managed with HFOV.

摘要

在新生儿中,当肺部通过施加气道压力(P(aw))实现扩张时,使用非潮式高频振荡通气(HFOV)越来越多地基于肺损伤风险降低的证据。然而,目前缺乏一种优化P(aw)的客观方法。我们在五只仔猪肺灌洗前后,通过呼吸感应体积描记法测量了一系列P(aw)设置下的肺容积变化(deltaV(L)[t])。然后,这些多个deltaV(L)(t)通过指数上升至最大值模型同时拟合,即deltaV(L)(t, P(aw)) = deltaV(L,max). (1 - e(-(t/tau))),其中deltaV(L,max)是P(aw)的S形函数,tau随肺容积变化。灌洗后,有效顺应性(C(EFF) = deltaV(L,max)/P(aw))通常降低,而tau增加,表明容积募集的节奏变慢。灌洗后,模型推导的C(EFF)-deltaV(L,max)关系发生了显著改变,呈S形且具有钟形导数函数。其导数的最大值对应于一个有利的(或最佳的)deltaV(L)/P(aw),此时可实现顺应性的最大增加。总之,呼吸感应体积描记法获得的C(EFF)-deltaV(L,max)数据为肺力学变化提供了重要见解。这些数据还为一种客观方法提供了基础:(1)在HFOV期间优化P(aw);(2)评估使用HFOV治疗新生儿潜在疾病的疗效以及病情进展/消退情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验