Halvorsen Erik M, Dennis Jameel, Keeney Paula, Sturgill Thomas W, Tuttle Jeremy B, Bennett James B
Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
Brain Res. 2002 Oct 11;952(1):98-110. doi: 10.1016/s0006-8993(02)03216-x.
The parkinsonian neurotoxin methylpyridinium (MPP(+)) mimics the neuropathology of Parkinson's disease (PD) and likely kills neurons by inhibiting complex I of the electron transport chain and increasing oxidative stress. We examined the time course of activation/inactivation of multiple pro- and anti-apoptotic signaling pathways in MPP(+)-induced apoptotic death of SH-SY5Y neuroblastoma cells. We found an early increase and later decrease of transcriptional activity of the generally anti-apoptotic nuclear factor kappa-beta (NF-kappa B) and early increases in activating phosphorylation of the anti-apoptotic upstream kinase protein kinase B (PKB, also known as AKT). Sequestration-inducing phosphorylation of pro-apoptotic BAD protein increased early then declined. A small biphasic increase in the generally pro-apoptotic p38 kinase activity paralleled the biphasic rise in NF-kappa B-mediated transcription. Inhibition of p38 kinase with 5 micro M SB203540, inhibition of MEK-ERK with 50 micro M U0126, or inhibition of phosphatidylinositol-3-kinase (PI3K) with 10 micro M LY294002 reduced cell viability by 4, 18 or 37%, respectively, after 24 h. All three kinase inhibitors increased cell death in response to 24 h of MPP(+), with the greatest effect shown by LY294002. Nerve growth factor (NGF) caused an early increase in activating phosphorylation of PKB/AKT and MEK-ERK and increased cell survival during MPP(+) exposure. We found that acute MPP(+) exposure activates multiple interacting death- and survival-promoting pathways. Survival-promoting MEK-ERK and PI3K pathways contribute to viability during MPP(+) exposure, both are activated by NGF, and loss of PI3K-mediated signaling and NF-kappa B-mediated transcription may commit cells irreversibly to apoptosis in this model. It remains unknown to what extent these signaling pathways modulate dopamine neuronal death in PD.
帕金森病神经毒素甲基吡啶鎓(MPP(+))模拟帕金森病(PD)的神经病理学特征,可能通过抑制电子传递链复合体I并增加氧化应激来杀死神经元。我们研究了MPP(+)诱导SH-SY5Y神经母细胞瘤细胞凋亡死亡过程中多种促凋亡和抗凋亡信号通路激活/失活的时间进程。我们发现,通常具有抗凋亡作用的核因子κB(NF-κB)的转录活性早期升高,随后降低,抗凋亡上游激酶蛋白激酶B(PKB,也称为AKT)的激活磷酸化早期增加。促凋亡BAD蛋白的隔离诱导磷酸化早期增加,随后下降。通常具有促凋亡作用的p38激酶活性出现小幅度双相增加,与NF-κB介导的转录双相升高平行。用5 μM SB203540抑制p38激酶、用50 μM U0126抑制MEK-ERK或用10 μM LY294002抑制磷脂酰肌醇-3-激酶(PI3K),24小时后细胞活力分别降低4%、18%或37%。所有三种激酶抑制剂均增加了MPP(+)处理24小时后的细胞死亡,其中LY294002的作用最为显著。神经生长因子(NGF)导致PKB/AKT和MEK-ERK的激活磷酸化早期增加,并在MPP(+)暴露期间提高细胞存活率。我们发现,急性MPP(+)暴露激活了多个相互作用的促死亡和促存活信号通路。促存活的MEK-ERK和PI3K通路在MPP(+)暴露期间有助于维持细胞活力,二者均被NGF激活,在该模型中,PI3K介导的信号传导和NF-κB介导的转录缺失可能使细胞不可逆转地走向凋亡。这些信号通路在多大程度上调节PD中多巴胺神经元的死亡仍不清楚。