Suppr超能文献

验证中风研究中的管理数据。

Validating administrative data in stroke research.

作者信息

Tirschwell David L, Longstreth W T

机构信息

Department of Neurology, Harborview Medical Center, University of Washington School of Medicine, Seattle 98104-2499, USA.

出版信息

Stroke. 2002 Oct;33(10):2465-70. doi: 10.1161/01.str.0000032240.28636.bd.

Abstract

BACKGROUND AND PURPOSE

Research based on administrative data has advantages, including large numbers, consistent data, and low cost. This study was designed to compare different methods of stroke classification using administrative data.

METHODS

Administrative hospital discharge data and medical record review of 206 patients were used to evaluate 3 algorithms for classifying stroke patients. These algorithms were based on all (algorithm 1), the first 2 (algorithm 2), or the primary (algorithm 3) administrative discharge diagnosis code(s). The diagnoses after review of medical record data were considered the gold standard. Then, using a large administrative data set, we compared patients with a primary discharge diagnosis of stroke with patients with their stroke discharge diagnosis code in a nonprimary position.

RESULTS

Compared with the gold standard, algorithm 1 had the highest kappa for classifying ischemic stroke, with a sensitivity of 86%, specificity of 95%, positive predictive value of 90%, and kappa=0.82. Algorithm 3 had the highest kappa values for intracerebral hemorrhage and subarachnoid hemorrhage. For intracerebral hemorrhage, the sensitivity was 85%, specificity was 96%, positive predictive value was 89%, and kappa=0.82. For subarachnoid hemorrhage, those values were 90%, 97%, 94%, and 0.88, respectively. Nonprimary position ischemic stroke patients had significantly greater comorbidity and 30-day mortality (odds ratio, 3.2) than primary position ischemic stroke patients.

CONCLUSIONS

Stroke classification in these administrative data were optimal using all discharge diagnoses for ischemic stroke and primary discharge diagnosis only for intracerebral and subarachnoid hemorrhage. Selecting ischemic stroke patients on the basis of primary discharge diagnosis may bias administrative samples toward more benign, unrepresentative outcomes and should be avoided.

摘要

背景与目的

基于行政数据的研究具有诸多优势,包括样本量大、数据一致性高以及成本低。本研究旨在比较使用行政数据进行卒中分类的不同方法。

方法

利用行政医院出院数据和对206例患者的病历审查来评估3种用于卒中患者分类的算法。这些算法分别基于所有(算法1)、前两个(算法2)或主要(算法3)行政出院诊断代码。病历数据审查后的诊断被视为金标准。然后,使用一个大型行政数据集,我们将主要出院诊断为卒中的患者与卒中出院诊断代码处于非主要位置的患者进行了比较。

结果

与金标准相比,算法1在缺血性卒中分类方面的kappa值最高,敏感性为86%,特异性为95%,阳性预测值为90%,kappa = 0.82。算法3在脑出血和蛛网膜下腔出血方面的kappa值最高。对于脑出血,敏感性为85%,特异性为96%,阳性预测值为89%,kappa = 0.82。对于蛛网膜下腔出血,这些值分别为90%、97%、94%和0.88。非主要位置的缺血性卒中患者的合并症和30天死亡率(优势比,3.2)显著高于主要位置的缺血性卒中患者。

结论

在这些行政数据中,对于缺血性卒中使用所有出院诊断进行分类是最佳的,而对于脑出血和蛛网膜下腔出血仅使用主要出院诊断。基于主要出院诊断选择缺血性卒中患者可能会使行政样本偏向于更良性、缺乏代表性的结果,应予以避免。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验