Lai Ying-Cheng, Kostelich Eric J
Department of Mathematics, Arizona State University, Tempe 85287, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Sep;66(3 Pt 2A):036217. doi: 10.1103/PhysRevE.66.036217. Epub 2002 Sep 24.
We address under what conditions dynamical coupling between chaotic systems can be detected reliably from scalar time series. In particular, we study weakly coupled chaotic systems and focus on the detectability of the correlation dimension of the chaotic invariant set by utilizing the Grassberger-Procaccia algorithm. An algebraic scaling law is obtained, which relates the necessary length of the time series to a key parameter of the system: the coupling strength. The scaling law indicates that an extraordinarily long time series is required for detecting the coupling dynamics.
我们探讨了在何种条件下能够从标量时间序列中可靠地检测到混沌系统之间的动态耦合。特别地,我们研究了弱耦合混沌系统,并利用格拉斯贝格 - 普罗卡恰算法专注于混沌不变集相关维度的可检测性。得到了一个代数标度律,它将时间序列的必要长度与系统的一个关键参数:耦合强度联系起来。该标度律表明检测耦合动力学需要极长的时间序列。