Suppr超能文献

拟南芥H⁺/Ca²⁺逆向转运蛋白CAX1和CAX3中Ca²⁺结构域的分析

Analysis of the Ca2+ domain in the Arabidopsis H+/Ca2+ antiporters CAX1 and CAX3.

作者信息

Shigaki Toshiro, Sreevidya Coimbatore, Hirschi Kendal D

机构信息

Baylor College of Medicine, Plant Physiology Group, USDA/ARS Children's Nutrition Research Center, Houston, TX 77030, USA.

出版信息

Plant Mol Biol. 2002 Oct;50(3):475-83. doi: 10.1023/a:1019880006606.

Abstract

Ca2+ levels in plants are controlled in part by H+/Ca2+ exchangers. Structure/function analysis of the Arabidopsis H+/cation exchanger, CAX1, revealed that a nine amino acid region (87-95) is involved in CAX1-mediated Ca2+ specificity. CAX3 is 77% identical (93% similar) to CAX1, and when expressed in yeast, localizes to the vacuole but does not suppress yeast mutants defective in vacuolar Ca2+ transport. Transgenic tobacco plants expressing CAX3 containing the 9 amino acid Ca2+ domain (Cad) from CAX1 (CAX3-9) displayed altered stress sensitivities similar to CAX1-expressing plants, whereas CAX3-9-expressing plants did not have any altered stress sensitivities. A single leucine-to-isoleucine change at position 87 (CAX3-I) within the Cad of CAX3 allows this protein to weakly transport Ca2+ in yeast (less than 10% of CAX1). Site-directed mutagenesis of the leucine in the CAX3 Cad demonstrated that no amino acid change tested could confer more activity than CAX3-I. Transport studies in yeast demonstrated that the first three amino acids of the CAX1 Cad could confer twice the Ca2+ transport capability compared to CAX3-I. The entire Cad of CAX3 (87-95) inserted into CAX1 abolishes CAX1-mediated Ca2+ transport. However, single, double, or triple amino acid replacements within the native CAX1 Cad did not block CAX1 mediated Ca2+ transport. Together these findings suggest that other domains within CAX1 and CAX3 influence Ca2+ transport. This study has implications for the ability to engineer CAX-mediated transport in plants by manipulating Cad residues.

摘要

植物中的钙离子(Ca²⁺)水平部分受氢离子/钙离子(H⁺/Ca²⁺)交换体控制。对拟南芥H⁺/阳离子交换体CAX1的结构/功能分析表明,一个九氨基酸区域(87 - 95)参与了CAX1介导的Ca²⁺特异性识别。CAX3与CAX1有77%的序列一致性(93%的相似性),当在酵母中表达时,定位于液泡,但不能抑制液泡Ca²⁺转运缺陷的酵母突变体。表达含有来自CAX1的9个氨基酸Ca²⁺结构域(Cad)的CAX3(CAX3 - 9)的转基因烟草植株表现出与表达CAX1的植株相似的胁迫敏感性改变,而表达CAX3 - 9的植株没有任何胁迫敏感性改变。CAX3的Cad内第87位的单个亮氨酸到异亮氨酸的变化(CAX3 - I)使该蛋白在酵母中能够微弱地转运Ca²⁺(不到CAX1的10%)。对CAX3 Cad中的亮氨酸进行定点诱变表明,所测试的氨基酸变化都不能赋予比CAX3 - I更高的活性。在酵母中的转运研究表明,与CAX3 - I相比,CAX1 Cad的前三个氨基酸能够使Ca²⁺转运能力提高两倍。插入到CAX1中的CAX3的整个Cad(87 - 95)会消除CAX1介导的Ca²⁺转运。然而,天然CAX1 Cad内的单个、双个或三个氨基酸替换并不会阻断CAX1介导的Ca²⁺转运。这些发现共同表明,CAX1和CAX3中的其他结构域会影响Ca²⁺转运。这项研究对于通过操纵Cad残基来改造植物中CAX介导的转运能力具有重要意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验