Wittkopp Patricia J, Vaccaro Kathy, Carroll Sean B
Howard Hughes Medical Institute, Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706, USA.
Curr Biol. 2002 Sep 17;12(18):1547-56. doi: 10.1016/s0960-9822(02)01113-2.
Changes in developmental gene expression are central to phenotypic evolution, but the genetic mechanisms underlying these changes are not well understood. Interspecific differences in gene expression can arise from evolutionary changes in cis-regulatory DNA and/or in the expression of trans-acting regulatory proteins, but few case studies have distinguished between these mechanisms. Here, we compare the regulation of the yellow gene, which is required for melanization, among distantly related Drosophila species with different pigment patterns and determine the phenotypic effects of divergent Yellow expression.
Yellow expression has diverged among D. melanogaster, D. subobscura, and D. virilis and, in all cases, correlates with the distribution of black melanin. Species-specific Yellow expression patterns were retained in D. melanogaster transformants carrying the D. subobscura and D. virilis yellow genes, indicating that sequence evolution within the yellow gene underlies the divergence of Yellow expression. Evolutionary changes in the activity of orthologous cis-regulatory elements are responsible for differences in abdominal Yellow expression; however, cis-regulatory element evolution is not the sole cause of divergent Yellow expression patterns. Transformation of the D. melanogaster yellow gene into D. virilis altered its expression pattern, indicating that trans-acting factors that regulate the D. melanogaster yellow gene have also diverged between these two species. Finally, we found that the phenotypic effects of evolutionary changes in Yellow expression depend on epistatic interactions with other genes.
Evolutionary changes in Yellow expression correlate with divergent melanin patterns and are a result of evolution in both cis- and trans-regulation. These changes were likely necessary for the divergence of pigmentation, but evolutionary changes in other genes were also required.
发育基因表达的变化是表型进化的核心,但这些变化背后的遗传机制尚未得到充分理解。基因表达的种间差异可能源于顺式调控DNA的进化变化和/或反式作用调控蛋白的表达变化,但很少有案例研究能区分这些机制。在这里,我们比较了在色素模式不同的远缘果蝇物种中,黑色素形成所需的黄色基因的调控,并确定了不同黄色表达的表型效应。
黄色基因的表达在黑腹果蝇、暗果蝇和粗壮果蝇中存在差异,并且在所有情况下都与黑色黑色素的分布相关。携带暗果蝇和粗壮果蝇黄色基因的黑腹果蝇转化体中保留了物种特异性的黄色表达模式,这表明黄色基因内的序列进化是黄色表达差异的基础。直系同源顺式调控元件活性的进化变化导致腹部黄色表达的差异;然而,顺式调控元件进化并不是黄色表达模式差异的唯一原因。将黑腹果蝇黄色基因转化到粗壮果蝇中改变了其表达模式,这表明调控黑腹果蝇黄色基因的反式作用因子在这两个物种之间也发生了分化。最后,我们发现黄色表达的进化变化的表型效应取决于与其他基因的上位性相互作用。
黄色表达的进化变化与不同的黑色素模式相关,是顺式和反式调控进化的结果。这些变化可能是色素沉着差异所必需的,但其他基因的进化变化也是必需的。