Suppr超能文献

A simple and rapid scanning electron microscope preparative technique for delicate "gymnodinioid" dinoflagellates.

作者信息

Botes Lizeth, Price Brendon, Waldron Miranda, Pitcher Grant C

机构信息

Marine and Coastal Management, Rogge Bay, Cape Town, 8012, South Africa.

出版信息

Microsc Res Tech. 2002 Oct 15;59(2):128-30. doi: 10.1002/jemt.10184.

Abstract

Light microscopy (LM) is routinely used to investigate delicate (unarmoured and lightly armoured) "gymnodinioid" dinoflagellate species but at this level of resolution, morphological features such as apical grooves, apical pores, thin thecal plates, and scales are often difficult to observe, thereby necessitating the use of scanning electron microscopy (SEM). Good results were obtained when harvested cells were fixed with osmium tetroxide (OsO(4)) as the primary fixative, adhered with poly-L-lysine to round glass coverslips, dehydrated in an ethanol series, and dried with hexamethyldisilazane (HMDS). Poly-L-lysine has in the past effectively been used to adhere biological material such as human red blood cells, mouse leukemic cells, and marine dinoflagellates to glass coverslips. HMDS has been used to substitute critical point drying (CPD) to dry soft insect tissues, rat hepatic endothelial cells, and the cilia of rat trachea. By combining and fine-tuning these two protocols in SEM studies of delicate "gymnodinioid" dinoflagellates, it is possible to overcome cell distortion such as shrinking and collapsing that result from centrifuging, filtering, and CPD. The combination of poly-L-lysine and HMDS not only produces good results but also requires limited expertise and equipment, is inexpensive, and is less time-consuming.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验