Pitici Felicia, Beveridge David L, Baranger Anne M
Chemistry Department and Molecular Biophysics Program, Wesleyan University, Middletown, CT 06459, USA.
Biopolymers. 2002 Dec 15;65(6):424-35. doi: 10.1002/bip.10251.
Molecular dynamics (MD) simulations on stem loop 2 of U1 small nuclear RNA and a construct of the U1A protein were carried out to obtain predictions of the structures for the unbound forms in solution and to elucidate dynamical aspects of induced fit upon binding. A crystal structure of the complex between the U1A protein and stem loop 2 RNA and an NMR structure for the uncomplexed form of the U1A protein are available from Oubridge et al. (Nature, 1994, Vol. 372, pp. 432-438) and Avis et al. (Journal of Molecular Biology, 1996, Vol. 257, pp. 398-411), respectively. As a consequence, U1A-RNA binding is a particularly attractive case for investigations of induced fit in protein-nucleic acid complexation. When combined with the available structural data, the results from simulations indicate that structural adaptation of U1A protein and RNA define distinct mechanisms for induced fit. For the protein, the calculations indicate that induced fit upon binding involves a non-native thermodynamic substate in which the structure is preorganized for binding. In contrast, induced fit of the RNA involves a distortion of the native structure in solution to an unstable form. However, the RNA solution structures predicted from simulation show evidence that structures in which groups of bases are favorably oriented for binding the U1A protein are thermally accessible. These results, which quantify with computational modeling recent proposals on induced fit and conformational capture by Leuillot and Varani (Biochemistry, 2001, Vol. 40, pp. 7947-7956) and by Williamson (Nature Structural Biology, 2000, Vol. 7, pp. 834-837) suggest an important role for intrinsic molecular architecture and substates other than the native form in the specificity of protein-RNA interactions.
对U1小核RNA的茎环2和U1A蛋白构建体进行了分子动力学(MD)模拟,以获得溶液中未结合形式的结构预测,并阐明结合时诱导契合的动力学方面。U1A蛋白与茎环2 RNA复合物的晶体结构以及U1A蛋白未复合形式的NMR结构分别可从Oubridge等人(《自然》,1994年,第372卷,第432 - 438页)和Avis等人(《分子生物学杂志》,1996年,第257卷,第398 - 411页)处获得。因此,U1A - RNA结合是研究蛋白质 - 核酸复合中诱导契合的一个特别有吸引力的案例。结合现有的结构数据,模拟结果表明U1A蛋白和RNA的结构适应性定义了诱导契合的不同机制。对于蛋白质,计算表明结合时的诱导契合涉及一种非天然热力学亚状态,其中结构为结合而预先组织。相比之下,RNA的诱导契合涉及溶液中天然结构向不稳定形式的扭曲。然而,模拟预测的RNA溶液结构显示出证据,即碱基基团以有利于结合U1A蛋白的方向排列的结构在热动力学上是可及的。这些结果通过计算建模量化了Leuillot和Varani(《生物化学》,2001年,第40卷,第7947 - 7956页)以及Williamson(《自然结构生物学》,2000年,第7卷,第834 - 837页)最近关于诱导契合和构象捕获的提议,表明除天然形式外,内在分子结构和亚状态在蛋白质 - RNA相互作用特异性中起重要作用。