Thibonnier M, Coles P, Thibonnier A, Shoham M
Departments of Medicine and Biochemistry, Case Western Reserve University School of Medicine, University Hospitals of Cleveland, Cleveland, OH, USA.
Prog Brain Res. 2002;139:179-96. doi: 10.1016/s0079-6123(02)39016-2.
AVP receptors represent a logical target for drug development. As a new class of therapeutic agents, orally active AVP analogs could be used to treat several human pathophysiological conditions including neurogenic diabetes insipidus, the syndrome of inappropriate secretion of AVP (SIADH), congestive heart failure, arterial hypertension, liver cirrhosis, nephrotic syndrome, dysmenorrhea, and ocular hypertension. By immunoprecipitation and immunoblotting, we elucidated the phosphorylation pattern of green fluorescent protein-tagged AVP receptors and showed interactions with the specific kinases PKC and GRK5 that are agonist-, time- and receptor subtype-dependent. The tyrosine residue of the NPWIY motif present in the 7th helix of AVP receptors is rapidly and transiently phosphorylated after agonist stimulation. This phosphorylation is instrumental in the genesis of the mitogenic cascade linked to the activation of this receptor, presumably by establishing key intramolecular contacts and by participating in the creation of a scaffold of proteins that produce the activation of downstream kinases. The random screening of chemical entities and optimization of lead compounds recently resulted in the development of orally active non-peptide AVP receptor agonists and antagonists. Furthermore, the identification of the molecular determinants of receptor-ligand interactions should facilitate the development of more potent and very selective orally active compounds via the approach of structure-based drug design. We developed three-dimensional molecular docking models of peptide and non-peptide ligands to the human V1 vascular, V2 renal and V3 pituitary AVP receptors. Docking of the peptide hormone AVP to the receptor ligand binding pockets reflects its dual polar and non-polar structure, but is receptor subtype-specific. The characteristics of non-peptide AVP analogs docking to the receptors are clearly distinct from those of peptide analogs docking. Molecular modeling of the results of site-directed mutagenesis experiments performed in CHO cells stably transfected with the human AVP receptor subtypes revealed that non-peptide antagonists establish key contacts with a few amino acid residues of the receptor subtypes that are different from those involved in agonist binding. Moreover, these interactions are species-specific. These findings provide further understanding of the signal transduction pathways of AVP receptors and new leads for elucidation of drug-receptor interactions and optimization of drug design. NOTE TO THE READER: The recent cloning and molecular characterization of AVP/OT receptor subtypes call for the revision of their nomenclature. For the sake of clarity and reference to their main site of expression, we call the V1a receptor the V1 vascular receptor, the V2 receptor the V2 renal receptor and the V1b or V3 receptor the V3 pituitary receptor in the present review.
血管加压素(AVP)受体是药物研发的合理靶点。作为一类新型治疗药物,口服活性AVP类似物可用于治疗多种人类病理生理状况,包括神经源性尿崩症、AVP不适当分泌综合征(SIADH)、充血性心力衰竭、动脉高血压、肝硬化、肾病综合征、痛经和高眼压症。通过免疫沉淀和免疫印迹,我们阐明了绿色荧光蛋白标记的AVP受体的磷酸化模式,并显示了与特定激酶蛋白激酶C(PKC)和G蛋白偶联受体激酶5(GRK5)的相互作用,这些相互作用是激动剂、时间和受体亚型依赖性的。激动剂刺激后,AVP受体第7螺旋中NPWIY基序的酪氨酸残基会迅速且短暂地磷酸化。这种磷酸化在与该受体激活相关的促有丝分裂级联反应的发生中起作用,可能是通过建立关键的分子内接触以及参与形成激活下游激酶的蛋白质支架来实现的。最近对化学实体的随机筛选和先导化合物的优化导致了口服活性非肽AVP受体激动剂和拮抗剂的开发。此外,受体 - 配体相互作用分子决定因素的鉴定应有助于通过基于结构的药物设计方法开发更有效且极具选择性的口服活性化合物。我们开发了肽和非肽配体与人V1血管、V2肾和V3垂体AVP受体的三维分子对接模型。肽激素AVP对接至受体配体结合口袋反映了其双极性和非极性结构,但具有受体亚型特异性。非肽AVP类似物对接至受体的特征与肽类似物对接的特征明显不同。对稳定转染人AVP受体亚型的CHO细胞中进行的定点诱变实验结果的分子建模表明,非肽拮抗剂与受体亚型的一些氨基酸残基建立了关键接触,这些残基与激动剂结合所涉及的残基不同。此外,这些相互作用具有物种特异性。这些发现为AVP受体的信号转导途径提供了进一步的理解,并为阐明药物 - 受体相互作用和优化药物设计提供了新的线索。给读者的提示:AVP/催产素(OT)受体亚型的最新克隆和分子特征要求对其命名进行修订。为了清晰起见并参考其主要表达位点,在本综述中,我们将V1a受体称为V1血管受体,V2受体称为V2肾受体,V1b或V3受体称为V3垂体受体。