Suppr超能文献

数据流量混沌模型中的优化与相变

Optimization and phase transitions in a chaotic model of data traffic.

作者信息

Woolf M, Arrowsmith D K, Mondragón-C R J, Pitts J M

机构信息

Mathematics Research Centre, Queen Mary, University of London, London E1 4NS, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Oct;66(4 Pt 2):046106. doi: 10.1103/PhysRevE.66.046106. Epub 2002 Oct 10.

Abstract

Ohira and Sawatari [Phys. Rev E 58, 193 (1998)] introduced a simple model for a packet-switching network which was extended by Solé and Valverde [Physica A 289, 595 (2001)]. Both models used Poisson-like traffic sources. Solé and Valverde demonstrated that long-range dependence (LRD) in autocorrelation behavior can be seen in the queue length dynamics at a given node. Actual network traffic sources are known to exhibit long-range autocorrelation. To simulate the real case more closely, we have studied the effect of introducing LRD behavior at an earlier stage. We replaced the Poisson-like sources with LRD sources, modeled using chaotic maps. As was seen in the previous models, a phase transition occurs as the traffic load on a network is increased and the network changes to a congested state where the time taken for delivery of packets increases dramatically and throughput collapses. The paper reports extensive numerical results from our simulations using both Poisson and LRD sources. It demonstrates the natural network-induced LRD when sources are purely Poisson and shows strong enhancement when LRD sources are added. The model is adapted to include congestion control mechanisms and their impact is considered.

摘要

大平与泽渡[《物理评论E》58, 193 (1998)]引入了一个用于分组交换网络的简单模型,索莱和瓦尔韦德[《物理学报A》289, 595 (2001)]对该模型进行了扩展。两个模型都使用了类泊松流量源。索莱和瓦尔韦德证明,在给定节点的队列长度动态中可以看到自相关行为中的长程相关性(LRD)。已知实际网络流量源呈现长程自相关。为了更紧密地模拟实际情况,我们研究了在更早阶段引入LRD行为的影响。我们用使用混沌映射建模的LRD源取代了类泊松源。正如在之前的模型中所看到的,随着网络上的流量负载增加且网络转变为拥塞状态,即数据包传递所需时间急剧增加且吞吐量崩溃,会发生相变。本文报告了我们使用泊松源和LRD源进行模拟的大量数值结果。它展示了当源纯粹是泊松源时自然的网络诱导LRD,并且当添加LRD源时显示出强烈增强。该模型经过调整以纳入拥塞控制机制,并考虑了它们的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验