Stahl David A, Fishbain Susan, Klein Michael, Baker Brett J, Wagner Michael
University of Washington, Seattle 98195-2700, USA.
Antonie Van Leeuwenhoek. 2002 Aug;81(1-4):189-95. doi: 10.1023/a:1020506415921.
If the diversification of microbial life can be depicted as a single tree, as inferred by comparative sequencing of ribosomal RNAs, this could provide a framework for defining the order of emergence of new metabolic pathways. However, recent recognition that lateral gene transfer has been a significant force in microbial evolution has created uncertainty about the interpretation of taxonomies based on gene sequences. In this context, the origins and evolution of sulfate respiration will be evaluated considering the evolutionary history of a central enzyme in this process, the dissimilatory sulfite reductase. These studies suggest at least two major lateral transfer events during the early diversification of sulfate respiring microorganisms. The high sequence conservation of this enzyme has also provided a mechanism to directly explore the natural diversity of sulfate-respiring organisms using molecular techniques, avoiding the bias of culture-based identification. These studies suggest that the habitat range and evolutionary diversity of this key functional group of organisms is greater than now appreciated.
如果正如核糖体RNA的比较测序所推断的那样,微生物生命的多样化可以被描绘成一棵单一的树,那么这可以为定义新代谢途径的出现顺序提供一个框架。然而,最近认识到横向基因转移在微生物进化中是一股重要力量,这使得基于基因序列的分类法解释产生了不确定性。在这种背景下,将结合该过程中的一种核心酶——异化亚硫酸盐还原酶的进化历史,来评估硫酸盐呼吸作用的起源和进化。这些研究表明,在硫酸盐呼吸微生物的早期多样化过程中至少发生了两次主要的横向转移事件。这种酶的高序列保守性还提供了一种机制,可利用分子技术直接探索硫酸盐呼吸生物的自然多样性,避免基于培养的鉴定方法所带来的偏差。这些研究表明,这类关键功能生物群体的栖息地范围和进化多样性比目前所认识到的要大。