Monfort Pilar, Muñoz María-Dolores, Kosenko Elena, Felipo Vicente
Instituto de Investigaciones Citológicas, Fundación Valenciana de Investigaciones Biomédicas, 46010, Valencia, Spain.
J Neurosci. 2002 Dec 1;22(23):10116-22. doi: 10.1523/JNEUROSCI.22-23-10116.2002.
Previous studies indicate that cGMP is involved in long-term potentiation (LTP). However, the effects of application of tetanus to induce LTP on cGMP content and the mechanisms by which cGMP may modulate LTP have not been reported. The aim of this work was to study the time course of the changes in cGMP content and of the activity of soluble guanylate cyclase (sGC) (the enzyme that synthesizes cGMP) during LTP. Moreover, we also studied how the changes in cGMP affect cGMP-dependent protein kinase (PKG) and cGMP-degrading phosphodiesterase and the possible role of these changes in LTP. Application of tetanus induced a rise in cGMP, reaching a maximum 10 sec after tetanus. cGMP content decreased below basal levels 5 min after tetanus and remained decreased after 60 min. Activity of sGC increased 5 min after tetanus and returned to basal at 60 min. Tetanus increased the activity of cGMP-degrading phosphodiesterase at 5 and 60 min. GMP, the product of degradation, was increased at 5 and 60 min. Activation of phosphodiesterase and a decrease in cGMP were prevented by inhibiting PKG with Rp-8-bromoguanosine-cGMPS (Rp-8-Br-cGMPS). Inhibition of sGC [with ODQ (oxadiazolo quinoxalin-1-one) or NS 2028 (4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b)(1,4)oxazin-1-one)], of PKG (with Rp-8-Br-cGMPS), or of cGMP-degrading phosphodiesterase [with zaprinast or MBAM (4-[[3',4'-(methylenedioxy)benzyl]amino]-6-methoxyquinazoline) ] impairs LTP. The results indicate that induction of LTP involves transient activation of sGC and an increase in cGMP, followed by activation of cGMP-dependent protein kinase, which, in turn, activates cGMP-degrading phosphodiesterase, resulting in long-lasting reduction of cGMP content.
以往研究表明,环磷酸鸟苷(cGMP)参与长时程增强(LTP)。然而,应用破伤风毒素诱导LTP对cGMP含量的影响以及cGMP调节LTP的机制尚未见报道。本研究旨在探讨LTP过程中环磷酸鸟苷(cGMP)含量及可溶性鸟苷酸环化酶(sGC)(合成cGMP的酶)活性变化的时间进程。此外,我们还研究了cGMP的变化如何影响环磷酸鸟苷依赖性蛋白激酶(PKG)和cGMP降解磷酸二酯酶,以及这些变化在LTP中的可能作用。应用破伤风毒素可使cGMP升高,在破伤风毒素作用后10秒达到峰值。破伤风毒素作用5分钟后,cGMP含量降至基础水平以下,并在60分钟后仍保持降低。sGC活性在破伤风毒素作用5分钟后升高,并在60分钟时恢复至基础水平。破伤风毒素在5分钟和60分钟时增加了cGMP降解磷酸二酯酶的活性。降解产物鸟苷酸(GMP)在5分钟和60分钟时增加。用Rp-8-溴鸟苷-cGMPS(Rp-8-Br-cGMPS)抑制PKG可阻止磷酸二酯酶的激活和cGMP的降低。抑制sGC[用ODQ(恶二唑并喹喔啉-1-酮)或NS 2028(4H-8-溴-1,2,4-恶二唑并(3,4-d)苯并(b)(1,4)恶嗪-1-酮)]、PKG(用Rp-8-Br-cGMPS)或cGMP降解磷酸二酯酶[用扎普司特或MBAM(4-[[3',4'-(亚甲二氧基)苄基]氨基]-6-甲氧基喹唑啉)]会损害LTP。结果表明,LTP的诱导涉及sGC的短暂激活和cGMP的增加,随后是环磷酸鸟苷依赖性蛋白激酶的激活,进而激活cGMP降解磷酸二酯酶,导致cGMP含量长期降低。