Suppr超能文献

Structure of mutant human carbonmonoxyhemoglobin C (betaE6K) at 2.0 A resolution.

作者信息

Dewan John C, Feeling-Taylor Angela, Puius Yoram A, Patskovska Larysa, Patskovsky Yury, Nagel Ronald L, Almo Steven C, Hirsch Rhoda Elison

机构信息

Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

出版信息

Acta Crystallogr D Biol Crystallogr. 2002 Dec;58(Pt 12):2038-42. doi: 10.1107/s0907444902016426. Epub 2002 Nov 23.

Abstract

Previous studies have demonstrated that in vitro crystallization of R-state liganded hemoglobin C (HbC), a naturally occurring mutant human hemoglobin (betaE6K), in high-phosphate buffer solutions provides a potential model system for the intracellular crystallization of HbC associated with chronic hemolytic anemia in CC disease. The first high-resolution crystal structure of liganded HbC is reported here. HbC was crystallized from high phosphate and the structure of the carbonmonoxy-liganded R-state form was refined at 2.0 A resolution. Crystals exhibit diffraction consistent with the tetragonal space group P4(1)2(1)2, with unit-cell parameters a = 54.16, c = 195.30 A. The structure was solved by difference Fourier techniques and refinement by simulated annealing and restrained least-squares yielded a final R of 0.183 and an R(free) of 0.238 for all 19,382 unique reflections. The side chain of betaK6 exhibits very weak electron density consistent with significant mobility within the crystalline lattice. The highly dynamic nature of the side chain could potentially support a number of specific polar interactions that might reduce the barrier to crystallization and thus result in enhanced crystallization kinetics for HbC relative to HbA. Specifically, the NZ atom of the BK6 side chain could participate in an amino-aromatic hydrogen bond with the pi-electron cloud of betaH116 in a symmetry-related tetramer. BetaK6 NZ might also interact with the main-chain carbonyl O atom of betaH117 and the carboxylate group of betaE22 from a symmetry-related tetramer.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验