Vaisman Alexandra, Frank Ekaterina G, McDonald John P, Tissier Agnès, Woodgate Roger
Section on DNA Replication, Repair and Mutagenesis, National Institute of Child Health and Human Development, National Institutes of Health, Building 6, Room 1A13, 9000 Rockville Pike, Bethesda, MD 20892-2725, USA.
Mutat Res. 2002 Dec 29;510(1-2):9-22. doi: 10.1016/s0027-5107(02)00248-8.
Based upon phylogenetic relationships, the broad Y-family of DNA polymerases can be divided into various subfamilies consisting of UmuC (polV)-like; DinB (polIV/polkappa)-like; Rev1-like, Rad30A (poleta)-like and Rad30B (poliota)-like polymerases. The polIV/polkappa-like polymerases are most ubiquitous, having been identified in bacteria, archaea and eukaryotes. In contrast, the polV-like polymerases appear restricted to bacteria (both Gram positive and Gram negative). Rev1 and poleta-like polymerases are found exclusively in eukaryotes, and to date, poliota-like polymerases have only been identified in higher eukaryotes. In general, the in vitro properties of polymerases characterized within each sub-family are quite similar. An exception to this rule occurs with the poliota-like polymerases, where the enzymatic properties of Drosophila melanogaster poliota are more similar to that of Saccharomyces cerevisiae and human poleta than to the related human poliota. For example, like poleta, Drosophila poliota can bypass a cis-syn thymine-thymine dimer both accurately and efficiently, while human poliota bypasses the same lesion inefficiently and with low-fidelity. Even in cases where human poliota can efficiently insert a base opposite a lesion (such as a synthetic abasic site, the 3'T of a 6-4-thymine-thymine pyrimidine-pyrimidone photoproduct or opposite benzo[a]pyrene diol epoxide deoxyadenosine adducts), further extension is often limited. Thus, although poliota most likely arose from a genetic duplication of poleta millions of years ago as eukaryotes evolved, it would appear that poliota from humans (and possibly all mammals) has been further subjected to evolutionary pressures that have "tailored" its enzymatic properties away from lesion bypass and towards other function(s) specific for higher eukaryotes. The identification of such functions and the role that mammalian poliota plays in lesion bypass in vivo, should hopefully be forthcoming with the construction of human cell lines deleted for poliota and the identification of mice deficient in poliota.
基于系统发育关系,DNA聚合酶的广义Y家族可分为多个亚家族,包括UmuC(polV)样、DinB(polIV/polkappa)样、Rev1样、Rad30A(poleta)样和Rad30B(poliota)样聚合酶。polIV/polkappa样聚合酶最为普遍,已在细菌、古细菌和真核生物中被鉴定出来。相比之下,polV样聚合酶似乎仅限于细菌(革兰氏阳性菌和革兰氏阴性菌)。Rev1和poleta样聚合酶仅存在于真核生物中,迄今为止,poliota样聚合酶仅在高等真核生物中被鉴定出来。一般来说,每个亚家族中所表征的聚合酶的体外特性非常相似。poliota样聚合酶是这条规则的一个例外,果蝇poliota的酶学特性与酿酒酵母和人类poleta的酶学特性比与相关的人类poliota更为相似。例如,与poleta一样,果蝇poliota能够准确且高效地绕过顺式胸腺嘧啶 - 胸腺嘧啶二聚体,而人类poliota绕过相同损伤的效率较低且保真度差。即使在人类poliota能够有效在损伤对面插入碱基的情况下(如合成的无碱基位点、6 - 4 - 胸腺嘧啶 - 胸腺嘧啶嘧啶 - 嘧啶酮光产物的3'T或苯并[a]芘二醇环氧化物脱氧腺苷加合物对面),进一步延伸通常也受到限制。因此,尽管poliota很可能是数百万年前随着真核生物进化由poleta基因复制产生的,但似乎人类(可能还有所有哺乳动物)的poliota进一步受到了进化压力,使其酶学特性从损伤绕过转向了高等真核生物特有的其他功能。随着缺失poliota的人类细胞系的构建以及poliota缺陷小鼠的鉴定,有望确定这些功能以及哺乳动物poliota在体内损伤绕过中所起的作用。