Suppr超能文献

群体解码中最大似然法的阈值行为

Threshold behaviour of the maximum likelihood method in population decoding.

作者信息

Xie Xiaohui

机构信息

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

出版信息

Network. 2002 Nov;13(4):447-56.

Abstract

We study the performance of the maximum likelihood (ML) method in population decoding as a function of the population size. Assuming uncorrelated noise in neural responses, the ML performance, quantified by the expected square difference between the estimated and the actual quantity, follows closely the optimal Cramer-Rao bound, provided that the population size is sufficiently large. However, when the population size decreases below a certain threshold, the performance of the ML method undergoes a rapid deterioration, experiencing a large deviation from the optimal bound. We explain the cause of such threshold behaviour, and present a phenomenological approach for estimating the threshold population size, which is found to be linearly proportional to the inverse of the square of the system's signal-to-noise ratio. If the ML method is used by neural systems, we expect the number of neurons involved in population coding to be above this threshold.

摘要

我们研究了最大似然(ML)方法在群体解码中的性能随群体规模的变化情况。假设神经反应中存在不相关噪声,通过估计量与实际量之间的期望平方差来量化的ML性能,在群体规模足够大的情况下,紧密遵循最优克拉美 - 罗界。然而,当群体规模降至某个阈值以下时,ML方法的性能会迅速恶化,与最优界出现较大偏差。我们解释了这种阈值行为的原因,并提出了一种用于估计阈值群体规模的唯象方法,发现该阈值与系统信噪比平方的倒数成线性比例。如果神经系统使用ML方法,我们预计参与群体编码的神经元数量会高于此阈值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验