Rao Bharat R, Sandilya Sathyakama, Niculescu Radu, Germond Colin, Goel A
Computer-Aided Diagnosis Group, Siemens Medical Solutions, Malvern, PA, USA.
Proc AMIA Symp. 2002:632-6.
We describe REMIND, a data mining framework that accurately infers missing clinical information by reasoning over the entire patient record. Hospitals collect computerized patient records (CPR's) in structured (database tables) and unstructured (free text) formats. Structured clinical data in the CPR's is often poorly recorded, and information may be missing about key outcomes and processes. For instance, for a population of 344 colon cancer patients, important clinical outcomes, such as disease state and its evolution, are stored only as unstructured data (doctors' dictations) in the CPR. Raw evidence (extracted directly from the CPR) is not a good predictor of disease state. Yet by combining this evidence in a principled fashion (using methods from uncertain and temporal reasoning), REMIND accurately infers disease state sequences for recurrence, a complex time-varying outcome, for these patients. These outcomes can now be added back into the CPR in structured form.
我们介绍了REMIND,这是一个数据挖掘框架,它通过对整个患者记录进行推理来准确推断缺失的临床信息。医院以结构化(数据库表)和非结构化(自由文本)格式收集计算机化患者记录(CPR)。CPR中的结构化临床数据通常记录不佳,关键结果和流程的信息可能缺失。例如,对于344名结肠癌患者群体,重要的临床结果,如疾病状态及其演变,仅作为非结构化数据(医生的口述)存储在CPR中。原始证据(直接从CPR中提取)不是疾病状态的良好预测指标。然而,通过以有原则的方式组合这些证据(使用不确定和时态推理方法),REMIND可以准确推断出这些患者复发(一种复杂的随时间变化的结果)的疾病状态序列。现在可以将这些结果以结构化形式添加回CPR中。