Wüthrich Marcel, Filutowicz Hanna I, Warner Tom, Klein Bruce S
Department of Pediatrics, University of Wisconsin Medical School, Madison, WI 53792, USA.
J Immunol. 2002 Dec 15;169(12):6969-76. doi: 10.4049/jimmunol.169.12.6969.
Understanding fundamental mechanisms of vaccine immunity will allow proper use and optimization of vaccines. Vaccination with a genetically engineered, live, attenuated strain of Blastomyces dermatitidis carrying a targeted deletion at the BAD1 locus confers sterilizing immunity against experimental lethal pulmonary infection. We found in this study that alphabeta T cells are requisite for durable vaccine immunity, whereas other T and B cells are dispensable. In immune-competent animals, CD4(+) T-cell derived cytokines TNF-alpha and IFN-gamma mediate vaccine immunity. Surprisingly, these factors are dispensable in immune-deficient animals, which rely on alternate mechanisms for robust vaccine immunity, yet still require O(2)(-) production rather than generation of NO. Our results clarify the cellular and molecular bases behind the first genetically engineered fungal vaccine. They also illustrate a sharp difference in vaccine mechanisms between immune-competent and immune-deficient hosts, which underscores the plasticity of residual immune elements in compromised hosts, and points to the feasibility of developing vaccines against invasive fungal infection in this fast growing patient population.
了解疫苗免疫的基本机制将有助于疫苗的合理使用和优化。用在BAD1基因座处有靶向缺失的基因工程减毒活皮炎芽生菌菌株进行疫苗接种,可赋予针对实验性致死性肺部感染的无菌免疫力。我们在本研究中发现,αβ T细胞是持久疫苗免疫所必需的,而其他T细胞和B细胞则不是必需的。在免疫功能正常的动物中,CD4(+) T细胞衍生的细胞因子TNF-α和IFN-γ介导疫苗免疫。令人惊讶的是,这些因子在免疫缺陷动物中不是必需的,免疫缺陷动物依靠其他机制获得强大的疫苗免疫力,但仍然需要产生O(2)(-)而不是NO。我们的结果阐明了第一种基因工程真菌疫苗背后的细胞和分子基础。它们还说明了免疫功能正常和免疫缺陷宿主之间疫苗机制的显著差异,这突出了受损宿主中残余免疫元件的可塑性,并指出了针对这一快速增长的患者群体开发抗侵袭性真菌感染疫苗的可行性。