Ramírez-García Sonia, Alegret Salvador, Céspedes Francisco, Forster Robert J
Grup de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra Spain.
Analyst. 2002 Nov;127(11):1512-9. doi: 10.1039/b206201a.
Electrodes based on particulate carbon-epoxy or silicone composites have been formed and characterised using electrochemical methods, scanning electron microscopy and scanning electrochemical microscopy. These composites are rigid, exhibit high electrical conductivity and are stable in organic solvents for prolonged periods. The bulk resistance of the Araldite-M and Araldite-CW2215 based electrodes is low, 130+/-12 and 185+/-15 ohms, respectively. In contrast, the bulk resistance of the silicone based electrodes is 1480+/-112 ohms. The uncompensated resistance of electrochemical cells where the composites act as working electrodes is significantly larger than that expected on the basis of solution resistance alone, i.e., up to 7.5 kohms in the case of the silicone composites. These results are interpreted in terms of the presence of pores within the composite material. The response times of the composite electrodes to changes in the applied potential is between 3.1 and 7.2 ms which, although almost an order of magnitude longer than a comparable glassy carbon electrode, is sufficiently rapid to give useful voltammetric data for scan rates of several V s(-1). Close to ideal reversible cyclic voltammetry is observed for ferrocene under semi-infinite diffusion control for scan rates between 0.01 and 0.1 V s(-1) at the Araldite composites. In contrast, the large resistance associated with the silicone based materials causes quasi-reversible responses to be observed over this range of scan rate. Scan rate dependent cyclic voltammetry and time resolved chronoamperometry responses observed for ferrocene in solution are consistent with those expected for a random array of microelectrodes. Scanning electron microscopy and scanning electrochemical microscopy has been used to image the shape, size and electrochemical activity of the electroactive zones. In the case of Araldite-M, the quality of the electrode surface has been probed by comparing the rate of heterogeneous electron transfer at a composite microelectrode with that found for a carbon fibre electrode. The standard heterogeneous electron transfer rate constant, k degrees , is 6.0+/-0.1 x 10(-3) cm s(-1) for the composite compared to 1.5+/-0.1 x 10(-1) cm s(-1) for the carbon fibre electrode. While the smaller rate constant found for the composite suggests a less pristine surface, k degrees is sufficiently large to support reversible, electron transfer under typical electroanalytical conditions. These fundamental measurements will underpin the development of enzyme based biosensors for use in organic solvents.
基于颗粒状碳 - 环氧树脂或硅酮复合材料的电极已通过电化学方法、扫描电子显微镜和扫描电化学显微镜进行了制备和表征。这些复合材料具有刚性,表现出高电导率,并且在有机溶剂中长时间稳定。基于Araldite - M和Araldite - CW2215的电极的体电阻较低,分别为130±12和185±15欧姆。相比之下,基于硅酮的电极的体电阻为1480±112欧姆。当复合材料用作工作电极时,电化学电池的未补偿电阻明显大于仅基于溶液电阻所预期的值,即在硅酮复合材料的情况下高达7.5千欧。这些结果可根据复合材料中存在孔隙来解释。复合电极对施加电位变化的响应时间在3.1至7.2毫秒之间,尽管这比类似的玻碳电极长近一个数量级,但对于几V s⁻¹的扫描速率而言,其速度足以给出有用的伏安数据。在Araldite复合材料上,对于0.01至0.1 V s⁻¹ 的扫描速率,在半无限扩散控制下,二茂铁观察到接近理想的可逆循环伏安法。相比之下,基于硅酮材料的大电阻导致在该扫描速率范围内观察到准可逆响应。在溶液中观察到的二茂铁的扫描速率依赖性循环伏安法和时间分辨计时电流法响应与随机排列的微电极所预期的响应一致。扫描电子显微镜和扫描电化学显微镜已用于对电活性区域的形状、大小和电化学活性进行成像。对于Araldite - M,通过比较复合微电极上的异质电子转移速率与碳纤维电极上的异质电子转移速率,对电极表面质量进行了探测。复合材料的标准异质电子转移速率常数k⁰为6.0±0.1×10⁻³ cm s⁻¹,而碳纤维电极的为1.5±0.1×10⁻¹ cm s⁻¹。虽然复合材料的速率常数较小表明表面不太纯净,但k⁰足够大以支持在典型电分析条件下的可逆电子转移。这些基础测量将为用于有机溶剂的基于酶的生物传感器的开发奠定基础。