Fu J C, Chai J W, Wong S T C, Deng J J, Yeh J Y
Department of Industrial Engineering, Da-Yeh University, Taiwan.
Magn Reson Imaging. 2002 Nov;20(9):649-57. doi: 10.1016/s0730-725x(02)00592-1.
In short axis left ventricular MR images, endocardial borders are the major parameters in evaluation of cardiovascular functions such as end diastolic volume, end systolic volume, and ejection fraction. Functional analysis captures the dynamic behavior of the cardiovascular system as revealed by the movement of the endocardial borders over time. Because of the huge number of MR images, an effective computerized tool is required for real time applications. One of the widely used automatic border detection algorithm-dynamic programming-generates zigzag borderlines, which lead to measurement errors. This paper surveys the performance of the wavelet adaptive filter, the snake, and the medial filter in smoothing over the zigzag borders generated by dynamic programming. Statistical analysis of two hundred and sixty four images from sixteen subjects show that all three algorithms can reduce the border line errors in terms of Hausdorff distance and border area error; however, only the wavelet adaptive filter is effective in providing the physiological measurements such as ejection fraction, end systolic volume and end diastolic volume.
在短轴位左心室磁共振图像中,心内膜边界是评估心血管功能(如舒张末期容积、收缩末期容积和射血分数)的主要参数。功能分析捕捉心血管系统的动态行为,这通过心内膜边界随时间的移动得以体现。由于磁共振图像数量巨大,实时应用需要有效的计算机化工具。一种广泛使用的自动边界检测算法——动态规划——会生成锯齿状边界线,这会导致测量误差。本文考察了小波自适应滤波器、主动轮廓模型(蛇形模型)和中值滤波器在平滑动态规划生成的锯齿状边界方面的性能。对来自16名受试者的264幅图像进行统计分析表明,这三种算法在豪斯多夫距离和边界面积误差方面都能减少边界线误差;然而,只有小波自适应滤波器在提供诸如射血分数、收缩末期容积和舒张末期容积等生理测量值方面是有效的。