Suppr超能文献

On unique representations of certain dynamical systems produced by continuous-time recurrent neural networks.

作者信息

Kimura Masahiro

机构信息

NTT Communication Science Laboratories, Seika-cho, Kyoto 619-0237, Japan.

出版信息

Neural Comput. 2002 Dec;14(12):2981-96. doi: 10.1162/089976602760805377.

Abstract

This article extends previous mathematical studies on elucidating the redundancy for describing functions by feedforward neural networks (FNNs) to the elucidation of redundancy for describing dynamical systems (DSs) by continuous-time recurrent neural networks (RNNs). In order to approximate a DS on R(n) using an RNN with n visible units, an n-dimensional affine neural dynamical system (A-NDS) can be used as the DS actually produced by the above RNN under an affine map from its visible state-space R(n) to its hidden state-space. Therefore, we consider the problem of clarifying the redundancy for describing A-NDSs by RNNs and affine maps. We clarify to what extent a pair of an RNN and an affine map is uniquely determined by its corresponding A-NDS and also give a nonredundant sufficient search set for the DS approximation problem based on A-NDS.

摘要

相似文献

1
2
Learning dynamical systems by recurrent neural networks from orbits.
Neural Netw. 1998 Dec;11(9):1589-1599. doi: 10.1016/s0893-6080(98)00098-7.
3
Temporal-kernel recurrent neural networks.
Neural Netw. 2010 Mar;23(2):239-43. doi: 10.1016/j.neunet.2009.10.009. Epub 2009 Nov 5.
4
Training recurrent networks by Evolino.
Neural Comput. 2007 Mar;19(3):757-79. doi: 10.1162/neco.2007.19.3.757.
5
Simultaneous L(p)-approximation order for neural networks.
Neural Netw. 2005 Sep;18(7):914-23. doi: 10.1016/j.neunet.2005.03.013.
6
Recurrent Neural Networks are universal approximators.
Int J Neural Syst. 2007 Aug;17(4):253-63. doi: 10.1142/S0129065707001111.
7
Approximation of state-space trajectories by locally recurrent globally feed-forward neural networks.
Neural Netw. 2008 Jan;21(1):59-64. doi: 10.1016/j.neunet.2007.10.004. Epub 2007 Nov 22.
8
Representations of continuous attractors of recurrent neural networks.
IEEE Trans Neural Netw. 2009 Feb;20(2):368-72. doi: 10.1109/TNN.2008.2010771. Epub 2009 Jan 13.
9
Some characterizations of global exponential stability of a generic class of continuous-time recurrent neural networks.
IEEE Trans Syst Man Cybern B Cybern. 2009 Jun;39(3):763-72. doi: 10.1109/TSMCB.2008.2009225. Epub 2009 Mar 24.
10
Markovian architectural bias of recurrent neural networks.
IEEE Trans Neural Netw. 2004 Jan;15(1):6-15. doi: 10.1109/TNN.2003.820839.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验