Suppr超能文献

生物学文献数据挖掘中的成就与挑战

Accomplishments and challenges in literature data mining for biology.

作者信息

Hirschman Lynette, Park Jong C, Tsujii Junichi, Wong Limsoon, Wu Cathy H

机构信息

The MITRE Corporation, USA.

出版信息

Bioinformatics. 2002 Dec;18(12):1553-61. doi: 10.1093/bioinformatics/18.12.1553.

Abstract

We review recent results in literature data mining for biology and discuss the need and the steps for a challenge evaluation for this field. Literature data mining has progressed from simple recognition of terms to extraction of interaction relationships from complex sentences, and has broadened from recognition of protein interactions to a range of problems such as improving homology search, identifying cellular location, and so on. To encourage participation and accelerate progress in this expanding field, we propose creating challenge evaluations, and we describe two specific applications in this context.

摘要

我们回顾了近期生物学文献数据挖掘的成果,并讨论了该领域进行挑战评估的必要性和步骤。文献数据挖掘已从简单的术语识别发展到从复杂句子中提取相互作用关系,并且从蛋白质相互作用的识别扩展到一系列问题,如改进同源性搜索、确定细胞定位等。为鼓励在这个不断扩展的领域中参与并加速进展,我们提议开展挑战评估,并在此背景下描述两个具体应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验