Suppr超能文献

Prefusion rearrangements resulting in fusion Peptide exposure in Semliki forest virus.

作者信息

Hammar Lena, Markarian Sevak, Haag Lars, Lankinen Hilkka, Salmi Aimo, Cheng R Holland

机构信息

Department of Biosciences, Karolinska Institute, Huddinge S-141 57, Sweden.

出版信息

J Biol Chem. 2003 Feb 28;278(9):7189-98. doi: 10.1074/jbc.M206015200. Epub 2002 Dec 17.

Abstract

Semliki Forest virus (SFV), like many enveloped viruses, takes advantage of the low pH in the endosome to convert into a fusion-competent configuration and complete infection by fusion with the endosomal membrane. Unlike influenza virus, carrying an N-terminal fusion peptide, SFV represents a less-well understood fusion principle involving an endosequence fusion peptide. To explore the series of events leading to a fusogenic configuration of the SFV, we exposed the virus to successive acidification, mimicking endosomal conditions, and followed structural rearrangements at probed sensor surfaces. Thus revealed, the initial phase involves a transient appearance of a non-linear neutralizing antibody epitope in the fusion protein, E1. Concurrent with the disappearance of this epitope, a set of masked sequences in proteins E1 and E2 became exposed. When pH reached 6.0-5.9 the virion transformed into a configuration of enlarged diameter with the fusion peptide optimally exposed. Simultaneously, a partly hidden sequence close to the receptor binding site in E2 became fully uncovered. At this presumably fusogenic stage, maximally 80 fusion peptide-identifying antibody Fab fragments could be bound per virion, i.e. one ligand per three copies of the fusion protein. The phenomena observed are discussed in terms of alphavirus structure and reported functional domains.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验