Guttentag Susan, Robinson Lauren, Zhang Peggy, Brasch Frank, Bühling Frank, Beers Michael
Division of Neonatology, Department of Pediatrics, University of Pennsylvania School of Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4318, USA.
Am J Respir Cell Mol Biol. 2003 Jan;28(1):69-79. doi: 10.1165/rcmb.2002-0111OC.
Surfactant protein (SP)-B is essential for lamellar body genesis and for the final steps in proSP-C post-translational processing. The mature SP-B protein is derived from multistep processing of the primary translation product proSP-B; however, the enzymes required for these events are currently unknown. Recent ultrastructural colocalization studies have suggested that the cysteine protease Cathepsin H may be involved in proSP-B processing. Using models of isolated human type 2 cells in culture, we describe the effects of cysteine protease inhibition by E-64 on SP-B processing and type 2 cell differentiation. Pulse-chase labeling and Western immunoblotting studies showed that the final step of SP-B processing, specifically cleavage of SP-B(9) to SP-B(8), was significantly inhibited by E-64, resulting in delayed accumulation of SP-B(8) without adverse effects on SP-A or glyceraldehyde phosphate dehydrogenase expression. E-64 treatment during type 2 cell differentiation mimicked features of inherited SP-B deficiency in humans and mice, specifically disrupted lamellar body genesis, and aberrant processing of proSP-C. Reverse transcriptase-polymerase chain reaction and Western immunoblotting studies showed that Cathepsin H is induced during in vitro differentiation of type 2 cells and localizes with SP-B in multivesicular bodies, composite bodies, and lamellar bodies by immunoelectron microscopy. Furthermore, Cathepsin H activity was specifically inhibited in a dose-dependent fashion by E-64. Our data show that a cysteine protease is involved in SP-B processing, lamellar body genesis, and SP-C processing, and suggest that Cathepsin H is the most likely candidate protease.