Mo Chengjun, Lee Jay, Sommer Marvin, Grose Charles, Arvin Ann M
Department of Pediatrics, Stanford University School of Medicine, California 93405, USA.
Virology. 2002 Dec 20;304(2):176-86. doi: 10.1006/viro.2002.1556.
The glycoprotein E (gE) of varicella zoster virus (VZV), encoded by ORF68, is the most abundant viral glycoprotein. In the current experiments, we demonstrated that ORF68 deletion was incompatible with recovery of infectious virus from VZV cosmids. Replacing ORF68 at a nonnative AvrII site in the genome restored infectivity. Further, we found that VZV gE could be expressed under the control of the Tet-On promoter in stably transfected melanoma cell lines (Met-gE cells) without evidence of toxicity. In these Met-gE cells, gE colocalized with gamma-adaptin, a trans Golgi network marker, in perinuclear sites, but did not reach plasma membranes. In order to investigate how infection altered gE localization, we made a recombinant virus, vOka-MSPgE, with ORF68 from the VZV MSP strain. VZV MSP encodes a mutant gE protein (D150N) that lacks the mAb epitope, 3B3 (Santos et al., Virology 275, 306-317, 2000), whereas Met-gE protein binds mAb 3B3. Within 48 h after Met-gE cells were infected with vOka-MSPgE, the steady-state distribution of Met-gE protein extended beyond the perinuclear areas to other cytoplasmic sites and to plasma membranes. A second recombinant, vOka-MSPgE without gI (vOka-MSPgEdeltagI), was constructed to investigate Met-gE protein distribution in the absence of gI. The redistribution of Met-gE protein which was observed by 48 h after vOka-MSPgE infection did not occur until 5 days (140 h) within vOka-MSPgEdeltagI infected cells. After vOka-MSPgE infection of Met-gE cells, most Met-gE protein was in the final 94K mature form by 72 h. However, progression to predominance of mature gE was delayed in Met-gE cells infected with vOka-MSPgEdeltagI. These observations confirm our hypothesis that VZV gE is essential, based upon the demonstration of restored infectivity after replacing ORF68 in a nonnative site in the genome, and provide further evidence of the role of gI in facilitating the maturation and intracellular distribution of this critical VZV glycoprotein.
水痘带状疱疹病毒(VZV)的糖蛋白E(gE)由ORF68编码,是病毒中含量最丰富的糖蛋白。在当前实验中,我们证明从VZV黏粒中回收感染性病毒时,缺失ORF68是无法实现的。在基因组中非天然的AvrII位点替换ORF68可恢复病毒的感染性。此外,我们发现VZV gE可在稳定转染的黑色素瘤细胞系(Met - gE细胞)中,在Tet - On启动子的控制下表达,且无毒性迹象。在这些Met - gE细胞中,gE与反式高尔基体网络标志物γ - 衔接蛋白在核周位点共定位,但未到达质膜。为了研究感染如何改变gE的定位,我们构建了一种重组病毒vOka - MSPgE,其ORF68来自VZV MSP株。VZV MSP编码一种突变的gE蛋白(D150N),该蛋白缺乏单克隆抗体(mAb)表位3B3(Santos等人,《病毒学》275,306 - 317,2000),而Met - gE蛋白能结合mAb 3B3。Met - gE细胞被vOka - MSPgE感染后48小时内,Met - gE蛋白的稳态分布从核周区域扩展到其他细胞质位点及质膜。构建了第二种重组病毒vOka - MSPgEΔgI(缺失gI的vOka - MSPgE),以研究在没有gI的情况下Met - gE蛋白的分布。vOka - MSPgE感染后48小时观察到的Met - gE蛋白重新分布,在vOka - MSPgEΔgI感染的细胞中直到5天(140小时)才出现。Met - gE细胞被vOka - MSPgE感染后72小时,大多数Met - gE蛋白呈最终的94K成熟形式。然而,在被vOka - MSPgEΔgI感染的Met - gE细胞中,成熟gE占主导的进程延迟。这些观察结果证实了我们的假设,即VZV gE是必不可少的,依据是在基因组中非天然位点替换ORF