Suppr超能文献

Characterization of the molecular events following impairment of NF-kappaB-driven transcription in neurons.

作者信息

Chiarugi Alberto

机构信息

Department of Cellular and Molecular Physiology, University of Massachusetts Medical School, Worcester, MA 01605, USA.

出版信息

Brain Res Mol Brain Res. 2002 Dec 30;109(1-2):179-88. doi: 10.1016/s0169-328x(02)00558-2.

Abstract

Nuclear factor-kappaB (NF-kappaB) is a transcription factor with a pivotal role in neuronal homeostasis. Indeed, NF-kappaB trans-activates several antiapoptotic genes in neurons and inhibition of NF-kappaB transcriptional activity triggers neuronal apoptosis. However, the exact mechanisms by which neurons undergo apoptosis in conditions of NF-kappaB inhibition are poorly understood. To further clarify how NF-kappaB operates in neurons, and to gather information on the molecular events occurring during NF-kappaB inhibition-dependent neuronal apoptosis, this study evaluated the effects of recently identified NF-kappaB inhibitors such as parthenolide, SN50, BAY 11-7082 and helenalin on primary cultures of rat cortical neurons. Data show that NF-kappaB was constitutively activated in neurons, and demonstrate for the first time that drug-dependent NF-kappaB inhibition induced rapid mitochondrial release of cytochrome c, caspase-9 and -3 activation, poly(ADP-ribose) polymerase-1 cleavage, membrane blebbing and nuclear fragmentation, without evidence of procaspase-8 and Bid processing. Interestingly, a burst of Akt activation occurred in neurons exposed to NF-kappaB inhibitors. These events were preceded by selective reduction of mRNAs of NF-kappaB-dependent, antiapoptotic Bcl-2 family members such as Bcl-x(L), Bcl-2 and, in particular, A1/Bfl-1. The present study reports a novel, detailed temporal analysis of the molecular events following impairment of NF-kappaB-driven transcription in neurons and demonstrates that inhibition of constitutive neuronal NF-kappaB activity triggers selective activation of the intrinsic apoptotic program.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验