Townsend Jeffrey P, Hartl Daniel L
Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
Genome Biol. 2002;3(12):RESEARCH0071. doi: 10.1186/gb-2002-3-12-research0071. Epub 2002 Nov 20.
Methods of microarray analysis that suit experimentalists using the technology are vital. Many methodologies discard the quantitative results inherent in cDNA microarray comparisons or cannot be flexibly applied to multifactorial experimental design. Here we present a flexible, quantitative Bayesian framework. This framework can be used to analyze normalized microarray data acquired by any replicated experimental design in which any number of treatments, genotypes, or developmental states are studied using a continuous chain of comparisons.
We apply this method to Saccharomyces cerevisiae microarray datasets on the transcriptional response to ethanol shock, to SNF2 and SWI1 deletion in rich and minimal media, and to wild-type and zap1 expression in media with high, medium, and low levels of zinc. The method is highly robust to missing data, and yields estimates of the magnitude of expression differences and experimental error variances on a per-gene basis. It reveals genes of interest that are differentially expressed at below the twofold level, genes with high 'fold-change' that are not statistically significantly different, and genes differentially regulated in quantitatively unanticipated ways.
Anyone with replicated normalized cDNA microarray ratio datasets can use the freely available MacOS and Windows software, which yields increased biological insight by taking advantage of replication to discern important changes in expression level both above and below a twofold threshold. Not only does the method have utility at the moment, but also, within the Bayesian framework, there will be considerable opportunity for future development.
适合使用该技术的实验人员的微阵列分析方法至关重要。许多方法丢弃了cDNA微阵列比较中固有的定量结果,或者不能灵活应用于多因素实验设计。在此,我们提出一个灵活的定量贝叶斯框架。该框架可用于分析通过任何重复实验设计获得的标准化微阵列数据,在这种设计中,使用连续的比较链研究任意数量的处理、基因型或发育状态。
我们将此方法应用于酿酒酵母微阵列数据集,这些数据集涉及对乙醇冲击的转录反应、在丰富和基本培养基中SNF2和SWI1缺失的情况,以及在高、中、低锌水平培养基中野生型和zap1的表达。该方法对缺失数据具有高度鲁棒性,并能在每个基因的基础上得出表达差异幅度和实验误差方差的估计值。它揭示了在两倍水平以下差异表达的感兴趣基因、具有高“倍数变化”但在统计学上无显著差异的基因,以及以定量上意想不到的方式差异调节的基因。
任何拥有重复标准化cDNA微阵列比率数据集的人都可以使用免费的MacOS和Windows软件,该软件通过利用重复来识别高于和低于两倍阈值的表达水平的重要变化,从而增加生物学见解。该方法不仅目前有用,而且在贝叶斯框架内,未来还有很大的发展机会。