Fishman Paul A, Goodman Michael J, Hornbrook Mark C, Meenan Richard T, Bachman Donald J, O'Keeffe Rosetti Maureen C
Center for Health Studies, Group Health Cooperative, Seattle, Washington 98101, USA.
Med Care. 2003 Jan;41(1):84-99. doi: 10.1097/00005650-200301000-00011.
Develop and estimate the RxRisk model, a risk assessment instrument that uses automated ambulatory pharmacy data to identify chronic conditions and predict future health care cost. The RxRisk model's performance in predicting cost is compared with a demographic-only model, the Ambulatory Clinical Groups (ACG), and Hierarchical Coexisting Conditions (HCC) ICD-9-CM diagnosis-based risk assessment instruments. Each model's power to forecast health care resource use is assessed.
Health services utilization and cost data for approximately 1.5 million individuals enrolled in five mixed-model Health Maintenance Organizations (HMOs) from different regions in the United States.
Retrospective cohort study using automated managed care data. SUBJECTS All persons enrolled during 1995 and 1996 in Group Health Cooperative of Puget Sound, HealthPartners of Minnesota and the Colorado, Ohio and Northeast Regions of Kaiser-Permanente. MEASURES RxRisk, an algorithm that classifies prescription drug fills into chronic disease classes for adults and children.
HCCs produce the most accurate forecasts of total costs than either RxRisk or ACGs but RxRisk performs similarly to ACGs. Using the R(2) criteria HCCs explain 15.4% of the prospective variance in cost, whereas RxRisk explains 8.7% and ACGs explain 10.2%. However, for key segments of the cost distribution the differences in forecasting power among HCCs, RxRisk, and ACGs are less obvious, with all three models generating similar predictions for the middle 60% of the cost distribution.
HCCs produce more accurate forecasts of total cost, but the pharmacy-based RxRisk is an alternative risk assessment instrument to several diagnostic based models and depending on the nature of the application may be a more appropriate option for medical risk analysis.
开发并评估RxRisk模型,这是一种风险评估工具,利用门诊药房自动化数据识别慢性病并预测未来医疗保健成本。将RxRisk模型在预测成本方面的表现与仅基于人口统计学的模型、门诊临床分组(ACG)以及基于国际疾病分类第九版临床修正版(ICD-9-CM)诊断的分层共存疾病(HCC)风险评估工具进行比较。评估每个模型预测医疗保健资源使用的能力。
来自美国不同地区五个混合模式健康维护组织(HMO)中约150万参保人员的医疗服务利用和成本数据。
使用自动化管理式医疗数据的回顾性队列研究。
1995年和1996年期间在普吉特海湾健康合作组织、明尼苏达州健康伙伴以及凯撒医疗集团的科罗拉多州、俄亥俄州和东北地区参保的所有人。
RxRisk,一种将成人和儿童的处方药配药分类到慢性病类别的算法。
与RxRisk或ACG相比,HCC对总成本的预测最为准确,但RxRisk的表现与ACG相似。使用R(2)标准,HCC解释了成本预期方差的15.4%,而RxRisk解释了8.7%,ACG解释了10.2%。然而,对于成本分布的关键部分,HCC、RxRisk和ACG在预测能力上的差异不太明显,所有三个模型对成本分布中间60%的预测相似。
HCC对总成本的预测更准确,但基于药房的RxRisk是几种基于诊断的模型的替代风险评估工具,根据应用的性质,可能是医疗风险分析更合适的选择。