Rojkova Alexandra M, Woodard Geoffrey E, Huang Tzu-Chuan, Combs Christian A, Zhang Jian-Hua, Simonds William F
Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA.
J Biol Chem. 2003 Apr 4;278(14):12507-12. doi: 10.1074/jbc.M207302200. Epub 2003 Jan 24.
The signal transducing function of Gbeta(5) in brain is unknown. When studied in vitro Gbeta(5) is the only heterotrimeric Gbeta subunit known to interact with both Ggamma subunits and regulators of G protein signaling (RGS) proteins. When tested with Ggamma, Gbeta(5) interacts with other classical components of heterotrimeric G protein signaling pathways such as Galpha and phospholipase C-beta. We recently demonstrated nuclear expression of Gbeta(5) in neurons and brain (Zhang, J. H., Barr, V. A., Mo, Y., Rojkova, A. M., Liu, S., and Simonds, W. F. (2001) J. Biol. Chem. 276, 10284-10289). To gain further insight into the mechanism of Gbeta(5) nuclear localization, we generated a Gbeta(5) mutant deficient in its ability to interact with RGS7 while retaining its ability to bind Ggamma, and we compared its properties to the wild-type Gbeta(5). In HEK-293 cells co-transfection of RGS7 but not Ggamma(2) supported expression in the nuclear fraction of transfected wild-type Gbeta(5). In contrast the Ggamma-preferring Gbeta(5) mutant was not expressed in the HEK-293 cell nuclear fraction with either co-transfectant. The Ggamma-selective Gbeta(5) mutant was also excluded from the cell nucleus of transfected PC12 cells analyzed by laser confocal microscopy. These results define a requirement for RGS protein binding for Gbeta(5) nuclear expression.
Gβ(5)在大脑中的信号转导功能尚不清楚。在体外研究时,Gβ(5)是已知的唯一一种能与Gγ亚基和G蛋白信号调节因子(RGS)蛋白相互作用的异源三聚体Gβ亚基。在用Gγ进行测试时,Gβ(5)能与异源三聚体G蛋白信号通路的其他经典成分相互作用,如Gα和磷脂酶C-β。我们最近证明了Gβ(5)在神经元和大脑中的核表达(Zhang, J. H., Barr, V. A., Mo, Y., Rojkova, A. M., Liu, S., and Simonds, W. F. (2001) J. Biol. Chem. 276, 10284 - 10289)。为了进一步深入了解Gβ(5)核定位的机制,我们构建了一种Gβ(5)突变体,它缺乏与RGS7相互作用的能力,但保留了与Gγ结合的能力,并将其特性与野生型Gβ(5)进行了比较。在HEK - 293细胞中,共转染RGS7而非Gγ(2)能支持转染的野生型Gβ(5)在核部分的表达。相比之下,无论共转染何种物质,偏好Gγ的Gβ(5)突变体都不会在HEK - 293细胞核部分表达。通过激光共聚焦显微镜分析,Gγ选择性的Gβ(5)突变体也被排除在转染的PC12细胞核之外。这些结果表明,Gβ(5)核表达需要RGS蛋白结合。