Blasberg Ronald G, Gelovani-Tjuvajev Juri
Department of Neurology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021, USA.
J Cell Biochem Suppl. 2002;39:172-83. doi: 10.1002/jcb.10433.
Noninvasive in vivo molecular-genetic imaging has developed over the past decade and involves nuclear (PET, gamma camera), magnetic resonance, and in vivo optical imaging systems. Although three different imaging strategies - "direct," "indirect" and "surrogate" - are being used, most current in vivo molecular imaging strategies are "indirect" and involve the coupling of a "reporter gene" with a complimentary "reporter probe." Imaging the level of probe accumulation provides indirect information related to the level of reporter gene expression. Reporter gene constructs are driven by upstream promoter/enhancer elements; reporter gene expression can be "constitutive" leading to continuous transcription and used to identify the site of transduction and to monitor the level and duration of gene (vector) activity. Alternatively, reporter gene expression can be "inducible" leading to controlled gene expression. Controlled gene expression can be tissue-specific and/or responsive to the level of endogenous promoters and transcription factors. Several examples of imaging endogenous biological processes in animals using reporter constructs, radiolabeled probes and PET imaging are reviewed, including: 1) imaging transcriptional regulation (e.g., p53-dependent gene expression), 2) imaging weak promoters (cis- vs. trans-reporter configurations), 3) imaging post-transcriptional regulation of gene expression, 4) imaging protein-protein interactions. The development of versatile and sensitive assays that do not require tissue sampling will be of considerable value for monitoring molecular-genetic and cellular processes in animal models of human disease, as well as for studies in human subjects in the future. Non-invasive imaging of molecular-genetic and cellular processes will compliment established ex vivo molecular-biological assays that require tissue sampling, and will provide a spatial as well as a temporal dimension to our understanding of various diseases.
在过去十年中,非侵入性体内分子遗传成像技术得到了发展,它涉及核成像(正电子发射断层扫描、伽马相机)、磁共振成像和体内光学成像系统。尽管目前正在使用三种不同的成像策略——“直接”、“间接”和“替代”,但大多数当前的体内分子成像策略都是“间接”的,涉及将“报告基因”与互补的“报告探针”耦合。对探针积累水平进行成像可提供与报告基因表达水平相关的间接信息。报告基因构建体由上游启动子/增强子元件驱动;报告基因表达可以是“组成型”的,导致持续转录,并用于识别转导位点以及监测基因(载体)活性的水平和持续时间。或者,报告基因表达可以是“诱导型”的,导致可控的基因表达。可控的基因表达可以是组织特异性的和/或对内源启动子和转录因子的水平作出反应。本文综述了使用报告构建体、放射性标记探针和正电子发射断层扫描成像在动物体内成像内源性生物学过程的几个例子,包括:1)成像转录调控(例如,p53依赖性基因表达),2)成像弱启动子(顺式与反式报告基因配置),3)成像基因表达的转录后调控,4)成像蛋白质-蛋白质相互作用。开发不需要组织采样的通用且灵敏的检测方法对于监测人类疾病动物模型中的分子遗传和细胞过程以及未来对人类受试者的研究将具有相当大的价值。分子遗传和细胞过程的非侵入性成像将补充需要组织采样的既定离体分子生物学检测方法,并将为我们对各种疾病的理解提供空间和时间维度。