Ghosh Prasanta, Bill Eckhard, Weyhermüller Thomas, Neese Frank, Wieghardt Karl
Max-Planck-Institut für Strahlenchemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
J Am Chem Soc. 2003 Feb 5;125(5):1293-308. doi: 10.1021/ja021123h.
The electronic structure of the known iron complexes Fe(gma) (S(t) = 0) (1)(6) and [Fe(gma)(py)].py (S(t) = 1) (2)(7) where H(2)(gma) represents glyoxal-bis(2-mercaptoanil) has been shown by X-ray crystallography, Mössbauer spectroscopy, and density functional theory calculations to be best described as ferric (S(Fe) = 3/2) complexes containing a coordinated open-shell pi radical trianion (gma())(3)(-) and not as previously reported(6,7) as ferrous species with a coordinated closed-shell dianion (gma)(2)(-). Compound 1 (or 2) can be oxidized by I(2) yielding [Fe(III)(gma)I] (S(t) = 1/2) (3). With cyanide anions, complex 1 forms the adduct [(n-Bu)(4)N][Fe(III)(gma())(CN)] (S(t) = 1) (4), which can be one-electron oxidized with iodine yielding the neutral species [Fe(III)(gma)(CN)] (S(t) = 1/2) (5). With phosphines complex 1 also forms adducts(7) of which [Fe(III)(gma())(P(n-propyl)(3))] (S(t) = 1) (6) has been isolated and characterized by X-ray crystallography. [Fe(II)(gma)(P(n-propyl)(3))(2)] (S(t) = 0) (7) represents the only genuine ferrous species of the series. Density functional theory (DFT) calculations at the BP86 and B3LYP levels were applied to calculate the structural as well as the EPR and Mössbauer spectroscopic parameters of the title compounds as well as of the known complexes Zn(gma)(-) and Ni(gma)(-). Overall, the calculations give excellent agreement with the available spectroscopic information, thus lending support to the following electronic structure descriptions: The gma ligand features an unusually low lying LUMO, which readily accepts an electron to give (gma())(3)(-). The one-electron reduction of [Zn(gma)] and [Ni(gma)] is strictly ligand centered and differences in the physical properties of Zn(gma(*)) and Ni(gma(*)) are readily accounted for in terms of a model that features enhanced back-bonding from the metal to the gma LUMO in the case of Ni(gma(*)). In the case of [Fe(gma)(PH(3))], [Fe(gma)(py)], and Fe(gma)(CN) an electron transfer from the iron to the gma LUMO takes place to give strong antiferromagnetic coupling between an intermediate spin Fe(III) (S(Fe) = 3/2) and (gma(*))(3)(-) (S(gma) = 1/2), yielding a total spin S(t) = 1. Broken symmetry DFT calculations take properly account of this experimentally calibrated electronic structure description. By contrast, the complexes [Fe(gma)(PH(3))(2)] and [Fe(PhBMA)] feature closed-shell ligands with a low-spin Fe(II) (S(Fe) = S(t) = 0) and an intermediate spin central Fe(II) (S(Fe) = S(t) = 1), respectively. The most interesting case is provided by the one-electron oxidized species Fe(gma)(py), [Fe(gma)I], and [Fe(gma)(CN)]. Here the combination of theory and experiment suggests the coupling of an intermediate spin Fe(III) (S(Fe) = 3/2) to the dianionic ligand (gma)(2)(-) formally in its first excited triplet state (S(gma) = 1) to give a resulting S(t) = 1/2. All physical properties are in accord with this interpretation. It is suggested that this unique "excited state" coordination is energetically driven by the strong antiferromagnetic exchange interaction between the metal and the ligand, which cannot occur for the closed-shell form of the ligand.
已知铁配合物[Fe(gma)]₂(Sₜ = 0)(1)(6)和[Fe(gma)(py)]·py(Sₜ = 1)(2)(7)(其中H₂(gma)代表乙二醛双(2 - 巯基苯胺))的电子结构,通过X射线晶体学、穆斯堡尔光谱和密度泛函理论计算表明,最好将其描述为含有配位开壳π自由基三阴离子(gma*)₃⁻的铁(Ⅲ)(S(Fe) = 3/2)配合物,而不是如先前报道的(6,7)那样,是含有配位闭壳二阴离子(gma)₂⁻的亚铁物种。化合物1(或2)可被I₂氧化生成[Fe(III)(gma)I](Sₜ = 1/2)(3)。与氰根阴离子反应时,配合物1形成加合物[(n - Bu)₄N][Fe(III)(gma*)(CN)](Sₜ = 1)(4),它可被碘单电子氧化生成中性物种[Fe(III)(gma)(CN)](Sₜ = 1/2)(5)。与膦反应时,配合物1也形成加合物(7),其中[Fe(III)(gma*)(P(n - propyl)₃)](Sₜ = 1)(6)已通过X射线晶体学分离并表征。[Fe(II)(gma)(P(n - propyl)₃)₂](Sₜ = 0)(7)代表该系列中唯一真正的亚铁物种。在BP86和B3LYP水平上应用密度泛函理论(DFT)计算来计算标题化合物以及已知配合物[Zn(gma)]⁰/⁻和[Ni(gma)]⁰/⁻的结构以及EPR和穆斯堡尔光谱参数。总体而言,计算结果与现有的光谱信息非常吻合,从而支持了以下电子结构描述:gma配体具有异常低的LUMO,它很容易接受一个电子生成(gma*)₃⁻。[Zn(gma)]和[Ni(gma)]的单电子还原严格以配体为中心,并且[Zn(gma*)]⁻和[Ni(gma*)]⁻物理性质的差异可以通过一个模型很容易地解释,该模型的特点是在[Ni(gma*)]⁻的情况下,从金属到gma LUMO的反馈键增强。在[Fe(gma)(PH₃)]、[Fe(gma)(py)]和[Fe(gma)(CN)]⁻的情况下,发生从铁到gma LUMO的电子转移,在中间自旋Fe(III)(S(Fe) = 3/2)和(gma*)₃⁻(S(gma) = 1/2)之间产生强反铁磁耦合,产生总自旋Sₜ = 1。破缺对称性DFT计算正确地考虑了这种通过实验校准的电子结构描述。相比之下,配合物[Fe(gma)(PH₃)₂]和[Fe(PhBMA)]分别具有闭壳配体,其中Fe(II)为低自旋(S(Fe) = Sₜ = 0)和中间自旋中心Fe(II)(S(Fe) = Sₜ = 1)。最有趣的情况是由单电子氧化物种[Fe(gma)(py)]⁺、[Fe(gma)I]和[Fe(gma)(CN)]提供的。在这里,理论和实验的结合表明,中间自旋Fe(III)(S(Fe) = 3/2)与形式上处于其第一激发三重态(S(gma) = 1)的二阴离子配体(gma)₂⁻耦合,产生Sₜ = 1/2。所有物理性质都与这种解释一致。有人认为,这种独特的“激发态”配位在能量上是由金属和配体之间强烈的反铁磁交换相互作用驱动的,而这种相互作用对于配体的闭壳形式是不可能发生的。