Solcà Nicola, Dopfer Otto
Institut für Physikalische Chemie, Universität Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
J Am Chem Soc. 2003 Feb 5;125(5):1421-30. doi: 10.1021/ja021036p.
The IR spectrum of the fluoronium isomer of protonated fluorobenzene (F-C(6)H(6)F(+), phenylfluoronium) is recorded in the vicinity of the C-H and F-H stretch fundamentals to obtain the first structured spectrum of an isolated protonated aromatic molecule in the gas phase. Stable F-C(6)H(6)F(+) ions are produced via proton transfer from CH(5)(+) to fluorobenzene (C(6)H(5)F) in a supersonic plasma expansion. The F-C(6)H(6)F(+) spectrum recorded between 2,540 and 4,050 cm(-1) is consistent with a weakly bound ion-dipole complex composed of HF and the phenyl cation, HF-C(6)H(5)(+). The strongest transition occurs at 3,645 cm(-1) and is assigned to the F-H stretch (sigma(FH)). The antisymmetric C-H stretch of the two ortho hydrogen atoms, sigma(CH) = 3,125 cm(-1), is nearly unshifted from bare C(6)H(5)(+), indicating that HF complexation has little influence on the C-H bond strength of C(6)H(5)(+). Despite the simultaneous production of the more stable ring protonated carbenium isomers of C(6)H(6)F(+) (fluorobenzenium) in the electron ionization source, F-C(6)H(6)F(+) can selectively be photodissociated into C(6)H(5)(+) and HF under the present experimental conditions, because it has a much lower dissociation energy than all carbenium isomers. Quantum chemical calculations at the B3LYP and MP2 levels of theory using the 6-311G(2df,2pd) basis support the interpretation of the experimental data and provide further details on structural, energetic, and vibrational properties of F-C(6)H(6)F(+), the carbenium isomers of C(6)H(6)F(+), and other weakly bound HF-C(6)H(5)(+) ion-dipole complexes. The dissociation energy of F-C(6)H(6)F(+) with respect to dehydrofluorination is calculated as D(0) = 4521 cm(-1) (approximately 54 kJ/mol). Analysis of the charge distribution in F-C(6)H(6)F(+) supports the notation of a HF-C(6)H(5)(+) ion-dipole complex, with nearly the whole positive charge of the added proton distributed over the C(6)H(5)(+) ring. As a result, protonation at the F atom strongly destabilizes the C-F bond in C(6)H(5)F.
在质子化氟苯(F-C₆H₆F⁺,苯基氟鎓)的氟鎓异构体的红外光谱中,记录了C-H和F-H伸缩基频附近的光谱,以获得气相中孤立质子化芳香分子的首个结构化光谱。通过在超声等离子体膨胀中,从CH₅⁺向氟苯(C₆H₅F)进行质子转移,产生稳定的F-C₆H₆F⁺离子。在2540至4050 cm⁻¹之间记录的F-C₆H₆F⁺光谱与由HF和苯基阳离子HF-C₆H₅⁺组成的弱束缚离子-偶极复合物一致。最强的跃迁发生在3645 cm⁻¹处,归属为F-H伸缩振动(σ(FH))。两个邻位氢原子的反对称C-H伸缩振动,σ(CH)=3125 cm⁻¹,与裸C₆H₅⁺相比几乎没有位移,表明HF络合对C₆H₅⁺的C-H键强度影响很小。尽管在电子电离源中同时产生了更稳定的C₆H₆F⁺(氟苯鎓)的环质子化碳正离子异构体,但在当前实验条件下,F-C₆H₆F⁺可以选择性地光解离为C₆H₅⁺和HF,因为它的解离能比所有碳正离子异构体都低得多。使用6-311G(2df,2pd)基组在B3LYP和MP2理论水平上进行的量子化学计算支持了对实验数据的解释,并提供了关于F-C₆H₆F⁺、C₆H₆F⁺的碳正离子异构体以及其他弱束缚HF-C₆H₅⁺离子-偶极复合物的结构、能量和振动性质的更多细节。F-C₆H₆F⁺相对于脱氟化氢的解离能计算为D₀ = 4521 cm⁻¹(约54 kJ/mol)。对F-C₆H₆F⁺中电荷分布的分析支持了HF-C₆H₅⁺离子-偶极复合物的表示法,添加质子的几乎整个正电荷分布在C₆H₅⁺环上。结果,F原子处的质子化使C₆H₅F中的C-F键强烈不稳定。